1887

Abstract

Three actinomycete strains originating from the surface-sterilized roots of were characterized by using a polyphasic approach. Phylogenetic analyses based on the 16S rRNA gene sequence showed that they formed a deep, monophyletic branch in the genus , and were most closely related to the type strains of the species and Morphological and chemotaxonomic data supported the affiliation of strains CPCC 204357, CPCC 204354 and CPCC 204355 to the genus . The results of physiological and biochemical tests allowed phenotypic differentiation of strains CPCC 204357, CPCC 204354 and CPCC 204355 from their closest phylogenetic related species in the genus . Low levels of DNA–DNA relatedness with its closest type strains of and indicated that strain CPCC 204357 represent a novel species, for which the name sp. nov. is proposed, with CPCC 204357 (=DSM 102295=KCTC 39745) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002713
2018-05-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1578.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002713&mimeType=html&fmt=ahah

References

  1. Labeda DP, Testa RT, Lechevalier MP, Lechevalier HA. Glycomyces, a new genus of the Actinomycetales. Int J Syst Bacteriol 1985;35:417–421 [CrossRef]
    [Google Scholar]
  2. Han XX, Luo XX, Zhang LL. Glycomyces fuscus sp. nov. and Glycomyces albus sp. nov., actinomycetes isolated from a hypersaline habitat. Int J Syst Evol Microbiol 2014;64:2437–2441 [CrossRef][PubMed]
    [Google Scholar]
  3. Labeda DP, Kroppenstedt RM. Emended description of the genus Glycomyces and description of Glycomyces algeriensis sp. nov., Glycomyces arizonensis sp. nov. and Glycomyces lechevalierae sp. nov. Int J Syst Evol Microbiol 2004;54:2343–2346 [CrossRef][PubMed]
    [Google Scholar]
  4. Guan TW, Xia ZF, Xiao J, Wu N, Chen ZJ et al. Glycomyces halotolerans sp. nov., a novel actinomycete isolated from a hypersaline habitat in Xinjiang, China. Antonie van Leeuwenhoek 2011;100:137–143 [CrossRef][PubMed]
    [Google Scholar]
  5. Guan TW, Wang PH, Tian L, Tang SK, Xiang HP. Glycomyces lacisalsi sp. nov., an actinomycete isolated from a hypersaline habitat. Int J Syst Evol Microbiol 2016;66:5366–5370 [CrossRef][PubMed]
    [Google Scholar]
  6. Li W, Zhao J, Shi L, Wang J, Wang H et al. Glycomyces rhizosphaerae sp. nov., isolated from the root and rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2018;68:223–227 [CrossRef][PubMed]
    [Google Scholar]
  7. Lv LL, Zhang YF, Zhang LL. Glycomyces tarimensis sp. nov., an actinomycete isolated from a saline-alkali habitat. Int J Syst Evol Microbiol 2015;65:1587–1591 [CrossRef][PubMed]
    [Google Scholar]
  8. Evtushenko LI, Taptykova SD, Akimov VN, Semyonova SA, Kalakoutskii LV. Glycomyces tenuis sp. nov. Int J Syst Bacteriol 1991;41:154–157 [CrossRef]
    [Google Scholar]
  9. Li W, Liu C, Guo X, Song W, Sun T et al. Glycomyces tritici sp. nov., isolated from rhizosphere soil of wheat (Triticum aestivum L.) and emended description of the genus Glycomyces. Antonie van Leeuwenhoek 2017;12:1–7 [CrossRef][PubMed]
    [Google Scholar]
  10. Guan TW, Xiang HP, Wang PH, Tian L, Tang SK et al. Glycomyces xinjiangensis sp. nov., a novel actinomycete isolated from a hypersaline habitat. Arch Microbiol 2017;199:1231–1235 [CrossRef][PubMed]
    [Google Scholar]
  11. Zhang X, Ren K, Du J, Liu H, Zhang L. Glycomyces artemisiae sp. nov., an endophytic actinomycete isolated from the roots of Artemisia argyi. Int J Syst Evol Microbiol 2014;64:3492–3495 [CrossRef][PubMed]
    [Google Scholar]
  12. Qin S, Wang HB, Chen HH, Zhang YQ, Jiang CL et al. Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 2008;58:2525–2528 [CrossRef][PubMed]
    [Google Scholar]
  13. Qin S, Chen HH, Klenk HP, Zhao GZ, Li J et al. Glycomyces scopariae sp. nov. and Glycomyces mayteni sp. nov., isolated from medicinal plants in China. Int J Syst Evol Microbiol 2009;59:1023–1027 [CrossRef][PubMed]
    [Google Scholar]
  14. Xing K, Qin S, Zhang WD, Cao CL, Ruan JS et al. Glycomyces phytohabitans sp. nov., a novel endophytic actinomycete isolated from the coastal halophyte in Jiangsu, East China. J Antibiot 2014;67:559–563 [CrossRef][PubMed]
    [Google Scholar]
  15. Gu Q, Zheng W, Huang Y. Glycomyces sambucus sp. nov., an endophytic actinomycete isolated from the stem of Sambucus adnata Wall. Int J Syst Evol Microbiol 2007;57:1995–1998 [CrossRef][PubMed]
    [Google Scholar]
  16. Negi JS, Bisht VK, Bhandari AK, Bhatt VP, Singh P et al. Paris polyphylla: chemical and biological prospectives. Anticancer Agents Med Chem 2014;14:833–839 [CrossRef][PubMed]
    [Google Scholar]
  17. Coombs JT, Franco CM. Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 2003;69:5603–5608 [CrossRef][PubMed]
    [Google Scholar]
  18. Gu Q, Luo H, Zheng W, Liu Z, Huang Y. Pseudonocardia oroxyli sp. nov., a novel actinomycete isolated from surface-sterilized Oroxylum indicum root. Int J Syst Evol Microbiol 2006;56:2193–2197 [CrossRef][PubMed]
    [Google Scholar]
  19. Zhou ZH, Liu ZH, Qian YD, Kim SB, Goodfellow M. Saccharopolyspora spinosporotrichia sp. nov., a novel actinomycete from soil. Int J Syst Bacteriol 1998;48:53–58 [CrossRef][PubMed]
    [Google Scholar]
  20. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  21. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983;129:1743–1813 [CrossRef][PubMed]
    [Google Scholar]
  22. Zhang YQ, Yu LY, Wang D, Liu HY, Sun CH et al. Roseomonas vinacea sp. nov., a Gram-negative coccobacillus isolated from a soil sample. Int J Syst Evol Microbiol 2008;58:2070–2074 [CrossRef][PubMed]
    [Google Scholar]
  23. Yuan LJ, Zhang YQ, Guan Y, Wei YZ, Li QP et al. Saccharopolyspora antimicrobica sp. nov., an actinomycete from soil. Int J Syst Evol Microbiol 2008;58:1180–1185 [CrossRef][PubMed]
    [Google Scholar]
  24. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  25. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002;Chapter 2:Unit 2.3 [CrossRef][PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  28. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  29. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004;101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  31. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  32. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  33. Wayne LG. International Committee on Systematic Bacteriology: announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl Bakteriol Mikrobiol Hyg 1988;268:433–434
    [Google Scholar]
  34. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  35. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  36. Embley TM, Goodfellow M, Minnikin DE, O'Donnell AG. Lipid and wall amino acid composition in the classification of Rothiadentocariosa. Zentralbl Bakteriol Mikrobiol Hyg 1984;257:285–295
    [Google Scholar]
  37. Collins MD, Goodfellow M, Minnikin DE. Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 1980;118:29–37 [CrossRef][PubMed]
    [Google Scholar]
  38. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015;65:206–213 [CrossRef][PubMed]
    [Google Scholar]
  39. Kellogg JA, Bankert DA, Withers GS, Sweimler W, Kiehn TE et al. Application of the Sherlock Mycobacteria Identification System using high-performance liquid chromatography in a clinical laboratory. J Clin Microbiol 2001;39:964–970 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002713
Loading
/content/journal/ijsem/10.1099/ijsem.0.002713
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error