1887

Abstract

A bacterial strain, designated IMCC25901, was isolated from a freshwater lake, Soyang, in the Republic of Korea. The strain was Gram-stain-negative, aerobic, non-motile, orange-coloured and short rod-shaped. The 16S rRNA gene sequence analysis showed that strain IMCC25901 was most closely related to Flavobacterium yonginense HMD1001 (97.0 %) and formed a robust phylogenetic clade with other species of the genus Flavobacterium . Growth of strain IMCC25901 was observed at 10–30 °C (optimum, 20 °C), pH 6–8 (optimum, pH 7) and 0–1.0 % NaCl (optimum, 0 %). The DNA G+C content of strain IMCC25901 was 34.2 mol%. The major fatty acid constituents of the strain were anteiso-C15 : 0, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and iso-C15 : 0. Cells of strain IMCC25901 contained phosphatidylethanolamine, an unidentified phospholipid, two unidentified aminolipids and two unidentified lipids. The isoprenoid quinone detected in the strain was MK-6. On the basis of the taxonomic data obtained in this study, it was concluded that strain IMCC25901 represented a novel species in the genus Flavobacterium , for which the name Flavobacterium lacicola sp. nov. is proposed. The type strain of Flavobacterium lacicola is IMCC25901 (=KCTC 52571=NBRC 112883).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002712
2018-03-14
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1565.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002712&mimeType=html&fmt=ahah

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Genus II. Flavobacterium gen. nov. In Whitman W. (editor) Bergey’s Manual of Determinative Bacteriology Baltimore: Williams & Wilkins; 1923; pp. 97– 117
    [Google Scholar]
  2. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
    [Google Scholar]
  3. Holmes B, Owen R. Proposal that Flavobacterium breve be substituted as the type species of the genus in place of Flavobacterium aquatile and dmended description of the genus Flavobacterium. Int J Syst Evol Microbiol 1979; 29: 416– 426
    [Google Scholar]
  4. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian Knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46: 128– 148 [CrossRef]
    [Google Scholar]
  5. Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013; 63: 1633– 1638 [CrossRef] [PubMed]
    [Google Scholar]
  6. Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY et al. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai'i, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013; 63: 3280– 3286 [CrossRef] [PubMed]
    [Google Scholar]
  7. Lee S, Weon HY, Han K, Ahn TY. Flavobacterium dankookense sp. nov., isolated from a freshwater reservoir, and emended descriptions of Flavobacterium cheonanense, F. chungnamense, F. koreense and F. aquatile. Int J Syst Evol Microbiol 2012; 62: 2378– 2382 [CrossRef] [PubMed]
    [Google Scholar]
  8. Feng Q, Gao Y, Nogi Y, Tan X, Han L et al. Flavobacterium maotaiense sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2015; 65: 171– 176 [CrossRef] [PubMed]
    [Google Scholar]
  9. Yoon JH, Park S, Kang SJ, Oh SJ, Myung SC et al. Flavobacterium ponti sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61: 81– 85 [CrossRef] [PubMed]
    [Google Scholar]
  10. Bhumika V, Srinivas TN, Kumar PA. Flavobacterium nitratireducens sp. nov., an amylolytic bacterium of the family Flavobacteriaceae isolated from coastal surface seawater. Int J Syst Evol Microbiol 2013; 63: 2490– 2496 [CrossRef] [PubMed]
    [Google Scholar]
  11. Dong K, Chen F, Du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol 2013; 63: 886– 892 [CrossRef] [PubMed]
    [Google Scholar]
  12. Singh H, du J, Won K, Yang JE, Akter S et al. Flavobacterium vireti sp. nov., isolated from soil. Antonie van Leeuwenhoek 2015; 107: 1421– 1428 [CrossRef] [PubMed]
    [Google Scholar]
  13. van Trappen S, Mergaert J, Swings J. Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2003; 53: 1241– 1245 [CrossRef] [PubMed]
    [Google Scholar]
  14. van Trappen S, Vandecandelaere I, Mergaert J, Swings J. Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2005; 55: 769– 772 [CrossRef] [PubMed]
    [Google Scholar]
  15. Yi H, Oh HM, Lee JH, Kim SJ, Chun J. Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 2005; 55: 637– 641 [CrossRef] [PubMed]
    [Google Scholar]
  16. Xu M, Xin Y, Tian J, Dong K, Yu Y et al. Flavobacterium sinopsychrotolerans sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2011; 61: 20– 24 [CrossRef] [PubMed]
    [Google Scholar]
  17. Fujii D, Nagai F, Watanabe Y, Shirasawa Y. Flavobacterium longum sp. nov. and Flavobacterium urocaniciphilum sp. nov., isolated from a wastewater treatment plant, and emended descriptions of Flavobacterium caeni and Flavobacterium terrigena. Int J Syst Evol Microbiol 2014; 64: 1488– 1494 [CrossRef] [PubMed]
    [Google Scholar]
  18. Horn MA, Ihssen J, Matthies C, Schramm A, Acker G et al. Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol 2005; 55: 1255– 1265 [CrossRef] [PubMed]
    [Google Scholar]
  19. Michaud L, Caruso C, Mangano S, Interdonato F, Bruni V et al. Predominance of Flavobacterium, Pseudomonas, and Polaromonas within the prokaryotic community of freshwater shallow lakes in the northern Victoria Land, East Antarctica. FEMS Microbiol Ecol 2012; 82: 391– 404 [CrossRef] [PubMed]
    [Google Scholar]
  20. Wells LE, Deming JW. Abundance of Bacteria, the Cytophaga-Flavobacterium cluster and Archaea in cold oligotrophic waters and nepheloid layers of the Northwest Passage, Canadian Archipelago. Aquatic Microbial Ecology 2003; 31: 19– 31 [CrossRef]
    [Google Scholar]
  21. Kolton M, Sela N, Elad Y, Cytryn E. Comparative genomic analysis indicates that niche adaptation of terrestrial Flavobacteria is strongly linked to plant glycan metabolism. PLoS One 2013; 8: e76704 [CrossRef] [PubMed]
    [Google Scholar]
  22. Tamaki H, Hanada S, Kamagata Y, Nakamura K, Nomura N et al. Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 2003; 53: 519– 526 [CrossRef] [PubMed]
    [Google Scholar]
  23. Nam GG, Joung Y, Park M, Kim S, Jeon HT et al. Flavobacterium soyangense sp. nov., a psychrotolerant bacterium, isolated from an oligotrophic freshwater lake. Int J Syst Evol Microbiol 2017; 67: 2440– 2445 [CrossRef] [PubMed]
    [Google Scholar]
  24. Jeon HT, Joung Y, Kim S, Lim Y, Cho JC. A report on 17 unrecorded bacterial species in Korea isolated from lake Soyang and Chungju in 2016. J Species Res 2017; 6: 163– 170
    [Google Scholar]
  25. Kim S, Kang I, Cho JC. Genomic analysis of a freshwater actinobacterium, "Candidatus Limnosphaera aquatica" Strain IMCC26207, isolated from Lake Soyang. J Microbiol Biotechnol 2017; 27: 825– 833 [CrossRef] [PubMed]
    [Google Scholar]
  26. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  27. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  28. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32: 1363– 1371 [Crossref]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  31. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  32. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  34. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983; 33: 580– 598 [CrossRef]
    [Google Scholar]
  35. Hildebrand DC. Pectate and Pectin gels for differentiation of Pseudomonas sp. and other bacterial plant pathogens. Phytopathology 1971; 61: 1430– 1436 [CrossRef]
    [Google Scholar]
  36. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society of Microbiology; 2007; pp. 330– 393
    [Google Scholar]
  37. Lichtenthaler HK, Buschmann C. Chlorophylls and cartenoids: measurement and characterization by UV-VIS spectroschopy. In Wrolstad RE. (editor) Current Protocols in Food Analytical Chemistry New York: Wiley; 2001; pp. F4.3.1– F4.3.8
    [Google Scholar]
  38. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [PubMed] [Crossref]
    [Google Scholar]
  39. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  40. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  41. Joung Y, Kim H, Ahn TS, Joh K. Flavobacterium yonginense sp. nov. and Flavobacterium myungsuense sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2012; 62: 806– 810 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002712
Loading
/content/journal/ijsem/10.1099/ijsem.0.002712
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error