1887

Abstract

A novel actinomycete, designated strain DH51B-4-3, which formed long chains of spherical spores borne on the tip of sporophores arising from the aerial mycelium, was isolated from rice rhizosphere soil. The isolate contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The whole-cell sugars of strain DH51B-4-3 were arabinose, galactose, glucose, rhamnose and ribose. The phospholipids in the cell membrane were phosphatidylethanolamine, phosphatidyl methylethanolamine, diphosphatidylglycerol and phosphatidylinositol. The major menaquinone was MK-9(H4). The main cellular fatty acids were iso-C16 : 0 and cyclo-C17 : 0. The G+C content of the genomic DNA was 68.2 mol%. Phylogenetic analysis using 16S rRNA gene sequences revealed that strain DH51B-4-3 should be classified in the genus Amycolatopsis and closely related to Amycolatopsis dongchuanensis YIM 75904 (98.06 %) and Amycolatopsis sacchari DSM 44468 (97.77 %). The result of DNA–DNA hybridization and some physiological and biochemical properties indicated that strain DH51B-4-3 could be readily distinguished from its closest phylogenetic relatives. On the basis of these phenotypic and genotypic data, this strain represents a novel species, for which the name Amycolatopsis rhizosphaerae sp. nov. is proposed. The type strain is DH51B-4-3 (=TBRC 6029=NBRC 112509).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002704
2018-03-14
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1546.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002704&mimeType=html&fmt=ahah

References

  1. Brigham RB, Pittenger RC. Streptomyces orientalis, n. sp., the source of vancomycin. Antibiot Chemother 1956; 6: 642– 647 [PubMed]
    [Google Scholar]
  2. Lechevalier MP, Prauser H, Labeda DP, Ruan JS. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol 1986; 36: 29– 37 [CrossRef]
    [Google Scholar]
  3. Yassin AF, Haggenel B, Budzikiewicz H, Schaal KP. Fatty acid and polar lipid composition of the genus Amycolatopsis: application of fast atom bombardment-mass spectrometry to structure analysis of underivatized phospholipids. Int J Syst Bacteriol 1993; 43: 414– 420 [CrossRef]
    [Google Scholar]
  4. Kim SB, Goodfellow M. Reclassification of Amycolatopsis rugosa Lechevalier et al. 1986 as Prauserella rugosa gen. nov., comb. nov. Int J Syst Bacteriol 1999; 49: 507– 512 [CrossRef] [PubMed]
    [Google Scholar]
  5. Henssen A, Kothe HW, Kroppenstedt RM. Transfer of Pseudonocardia azurea and "Pseudonocardia fastidiosa" to the genus Amycolatopsis, with emended species description. Int J Syst Bacteriol 1987; 37: 292– 295 [CrossRef]
    [Google Scholar]
  6. Ding L, Hirose T, Yokota A. Amycolatopsis echigonensis sp. nov. and Amycolatopsis niigatensis sp. nov., novel actinomycetes isolated from a filtration substrate. Int J Syst Evol Microbiol 2007; 57: 1747– 1751 [CrossRef] [PubMed]
    [Google Scholar]
  7. Bian J, Li Y, Wang J, Song FH, Liu M et al. Amycolatopsis marina sp. nov., an actinomycete isolated from an ocean sediment. Int J Syst Evol Microbiol 2009; 59: 477– 481 [CrossRef] [PubMed]
    [Google Scholar]
  8. Miao Q, Qin S, Bian GK, Yuan B, Xing K et al. Amycolatopsis endophytica sp. nov., a novel endophytic actinomycete isolated from oil-seed plant Jatropha curcas L. Antonie van Leeuwenhoek 2011; 100: 333– 339 [CrossRef] [PubMed]
    [Google Scholar]
  9. Xing K, Liu W, Zhang YJ, Bian GK, Zhang WD et al. Amycolatopsis jiangsuensis sp. nov., a novel endophytic actinomycete isolated from a coastal plant in Jiangsu, China. Antonie van Leeuwenhoek 2013; 103: 433– 439 [CrossRef] [PubMed]
    [Google Scholar]
  10. Huang Y, Paściak M, Liu Z, Xie Q, Gamian A. Amycolatopsis palatopharyngis sp. nov., a potentially pathogenic actinomycete isolated from a human clinical source. Int J Syst Evol Microbiol 2004; 54: 359– 363 [CrossRef] [PubMed]
    [Google Scholar]
  11. Busarakam K, Brown R, Bull AT, Tan GY, Zucchi TD et al. Classification of thermophilic actinobacteria isolated from arid desert soils, including the description of Amycolatopsis deserti sp. nov. Antonie van Leeuwenhoek 2016; 109: 319– 334 [CrossRef] [PubMed]
    [Google Scholar]
  12. Zhang G, Wang L, Li J, Zhou Y. Amycolatopsis albispora sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2016; 66: 3860– 3864 [CrossRef] [PubMed]
    [Google Scholar]
  13. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987; 65: 501– 509 [CrossRef]
    [Google Scholar]
  14. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  15. Waksman SA. The Actinomycetes. In Classification, Identification and Description of Genera and Speciesvol. 2 Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  16. Kelly KL. Inter-Society Color Council – National Bureau of Standard Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  17. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  18. Williams ST, Cross T. Actinomycetes. In Booth C. (editor) Methods in Microbiologyvol. 4 London: Academic Press; 1971; pp. 295– 334
    [Google Scholar]
  19. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24: 54– 63 [CrossRef]
    [Google Scholar]
  20. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29: 319– 322 [CrossRef]
    [Google Scholar]
  21. Uchida K, Aida KO. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984; 30: 131– 134 [CrossRef]
    [Google Scholar]
  22. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  23. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  24. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  25. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42: 989– 1005 [CrossRef]
    [Google Scholar]
  26. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  27. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54: 31– 36 [PubMed] [Crossref]
    [Google Scholar]
  28. Tamaoka J. Determination of DNA base composition. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp. 463– 470
    [Google Scholar]
  29. Thawai C. Micromonospora costi sp. nov., isolated from a leaf of Costus speciosus. Int J Syst Evol Microbiol 2015; 65: 1456– 1461 [CrossRef] [PubMed]
    [Google Scholar]
  30. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  31. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  33. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  35. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  36. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  37. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1972; 20: 406– 416 [CrossRef]
    [Google Scholar]
  38. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  39. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  40. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012; 62: 2650– 2656 [CrossRef] [PubMed]
    [Google Scholar]
  41. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
  42. Keswani J, Whitman WB. Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 2001; 51: 667– 678 [CrossRef] [PubMed]
    [Google Scholar]
  43. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002704
Loading
/content/journal/ijsem/10.1099/ijsem.0.002704
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error