1887

Abstract

A Gram-stain-negative, aerobic, non-motile bacterium, designated strain 10-7W-9003, was isolated from the forest soil of Limushan National Forest Park, south-east China (19° 10′ 42″ N, 109° 44′ 45″ E). Strain 10-7W-9003 showed a shape change during the course of culture from long filamentous cells (5–10×0.4–0.5 µm) at 5–36 h, to rod shaped (1.0–1.5×0.5–0.7 µm) with inoculation after 2 days. It grew optimally at 28–30 °C and pH 6.5–7.5. On the basis of 16S rRNA gene sequence analysis, it belongs to the genus and is most closely related to KACC 13774 and JCM 30026, with 16S rRNA gene sequences similarities of 98.8 and 98.3 %, respectively. However, the DNA–DNA hybridization study showed that strain 10-7W-9003 shared relatively low relatedness values with KACC 13774 (21.8 %) and JCM 30026 (20.4 %), respectively. The major fatty acids (>10 %) were iso-C, Cω5 and iso-C 3-OH. The genomic DNA G+C content was 50.7 mol%. It contained MK-7 as the major quinone. The phenotypic, chemotaxonomic and phylogenetic data clearly showed that strain 10-7W-9003 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 10-7W-9003 (=GDMCC 1.1252=KACC 19415=KCTC 52926).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002700
2018-07-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/7/2139.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002700&mimeType=html&fmt=ahah

References

  1. Kämpfer P, Young CC, Sridhar KR, Arun AB, Lai WA et al. Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int J Syst Evol Microbiol 2006;56:2223–2228
    [Google Scholar]
  2. Kämpfer P, Lodders N, Falsen E. Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 2011;61:518–523 [CrossRef][PubMed]
    [Google Scholar]
  3. Sangkhobol V, Chitinophaga SVBD. a New genus of chitinolytic myxobacteria. Int J Syst Bacteriol 1981;31:285–293
    [Google Scholar]
  4. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 2016;7:2003 [CrossRef][PubMed]
    [Google Scholar]
  5. Oren A, Garrity GM. Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 2017;67:2081–2086
    [Google Scholar]
  6. List of prokaryotic names with standing in nomenclature. www.bacterio.net [accessed 2 December 2016]
  7. Chaudhary DK, Kim J. Chitinophaga humicola sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2018;68:751–757 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim SJ, Cho H, Ahn JH, Weon HY, Joa JH et al. Chitinophaga rhizosphaerae sp. nov., isolated from rhizosphere soil of a tomato plant. Int J Syst Evol Microbiol 2017;67:3435–3439 [CrossRef][PubMed]
    [Google Scholar]
  9. Li N, Chen T, Cheng D, Xu XJ, He J. Chitinophaga sedimenti sp. nov., isolated from sediment. Int J Syst Evol Microbiol 2017;67:3485–3489 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhang LL, Liao SJ, Tan YQ, Wang GJ, Wang D et al. Chitinophaga barathri sp nov., isolated from mountain soil. Int J Syst Evol Microbiol 2015;65:4233–4238
    [Google Scholar]
  11. Yy L, Wang J, You J, Qiu LH. Chitinophaga dinghuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015;65:4816–4822
    [Google Scholar]
  12. Gao S, Zhang WB, Sheng XF, Ly H, Huang Z. Chitinophaga longshanensis sp. nov., a mineral-weathering bacterium isolated from weathered rock. Int J Syst Evol Microbiol 2015;65:418–423
    [Google Scholar]
  13. Cheng C, Wang Q, Ly H, Huang Z, Sheng XF. Chitinophaga qingshengii sp. nov., isolated from weathered rock surface. Int J Syst Evol Microbiol 2015;65:280–285
    [Google Scholar]
  14. Yasir M, Chung EJ, Song GC, Bibi F, Jeon CO et al. Chitinophaga eiseniae sp. nov., isolated from vermicompost. Int J Syst Evol Microbiol 2011;61:2373–2378
    [Google Scholar]
  15. Shaffer JP, U'ren JM, Gallery RE, Baltrus DA, Arnold AE. An endohyphal bacterium (Chitinophaga, Bacteroidetes) alters carbon source use by Fusarium keratoplasticum (F. solani species complex, Nectriaceae). Front Microbiol 2017;8:350 [CrossRef][PubMed]
    [Google Scholar]
  16. Shimkets LJ, Dworkin M, Reichenbach H. The myxobacteria. The Prokaryotes 2006;7:31–115
    [Google Scholar]
  17. Chen DH, Ronald PC. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Report 1999;17:53–57
    [Google Scholar]
  18. Yoon SH, Sm H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  22. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by highperformance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167
    [Google Scholar]
  23. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:122–142
    [Google Scholar]
  24. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  25. Bernardet JF, Nakagawa Y, Holmes B, Flavobacteri ST. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070
    [Google Scholar]
  26. Collee JG, Miles RS. Tests for identification of bacteria. In Collee JG, Duguid JP, Fraser AG, Marmion BP. (editors) Mackie and McCartney’s Practical Medical Microbiology Edinburgh: Churchill Livingstone; 1989; pp.141–160
    [Google Scholar]
  27. Hendricks CW, Doyle JD, Hugley B. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl Environ Microbiol 1995;61:2016–2019[PubMed]
    [Google Scholar]
  28. Singh PP, Shin YC, Park CS, Chung YR. Biological control of fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 1999;89:92–99
    [Google Scholar]
  29. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980;8:87–91 [CrossRef]
    [Google Scholar]
  30. Miller LT. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clini Microbiology 1982;16:584–586
    [Google Scholar]
  31. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  32. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  34. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP 18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367
    [Google Scholar]
  35. Kämpfer P, Young CC, Sridhar KR, Arun AB, Lai WA et al. Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int J Syst Evol Microbiol 2006;56:2223–2228 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002700
Loading
/content/journal/ijsem/10.1099/ijsem.0.002700
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error