1887

Abstract

A novel actinobacterium, designated strain NEAU-LZC 7, was isolated from soil collected from Mount Song and characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain NEAU-LZC 7 belonged to the genus Lentzea , with highest sequence similarity to Lentzea violacea JCM 10975 (98.1 %). Morphological and chemotaxonomic characteristics of the strain also supported its assignment to the genus Lentzea . However, DNA–DNA relatedness, physiological and biochemical data showed that strain NEAU-LZC 7 could be distinguished from its closest relative. Therefore, strain NEAU-LZC 7 represents a novel species of the genus Lentzea , for which the name Lentzea soli sp. nov. is proposed, with NEAU-LZC 7 (=CCTCC AA 2017027=JCM 32384) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002698
2018-03-14
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1496.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002698&mimeType=html&fmt=ahah

References

  1. Yassin AF, Rainey FA, Brzezinka H, Jahnke KD, Weissbrodt H et al. Lentzea gen. nov., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1995; 45: 357– 363 [CrossRef] [PubMed]
    [Google Scholar]
  2. Lee SD, Kim ES, Roe JH, Kim J, Kang SO et al. Saccharothrix violacea sp. nov., isolated from a gold mine cave, and Saccharothrix albidocapillata comb. nov. Int J Syst Evol Microbiol 2000; 50: 1315– 1323 [CrossRef] [PubMed]
    [Google Scholar]
  3. Labeda DP, Hatano K, Kroppenstedt RM, Tamura T. Revival of the genus Lentzea and proposal for Lechevalieria gen. nov. Int J Syst Evol Microbiol 2001; 51: 1045– 1050 [CrossRef]
    [Google Scholar]
  4. Cao C, Yuan B, Qin S, Jiang J, Tao F et al. Lentzea pudingi sp. nov., isolated from a weathered limestone sample in a karst area. Int J Syst Evol Microbiol 2017; 67: 4873– 4878 [CrossRef] [PubMed]
    [Google Scholar]
  5. Labeda DP, Goodfellow M, Chun J, Zhi XY, Li WJ. Reassessment of the systematics of the suborder Pseudonocardineae: transfer of the genera within the family Actinosynnemataceae Labeda and Kroppenstedt 2000 emend. Zhi et al. 2009 into an emended family Pseudonocardiaceae Embley et al. 1989 emend. Zhi et al. 2009. Int J Syst Evol Microbiol 2011; 61: 1259– 1264 [CrossRef] [PubMed]
    [Google Scholar]
  6. Labeda DP. Genus XI. Lentzea Yassin, Rainey, Brzezinka, Jahnke, Weissbrodt, Budzikiewicz, Stackebrandt and Schaal 1995, 1125VP emend. Labeda, Hatano, Kroppenstedt and Tamura 2001, 1049. In Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Suzuki K-I et al. (editors) Bergey’s Manual of Systematic Bacteriology, Part A, 2nd ed.vol. 5 New York: Springer; 2012; pp. 1379– 1383
    [Google Scholar]
  7. Piao C, Zheng W, Li Y, Liu C, Jin L et al. Two new species of the genus Streptomyces: Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. isolated from the cuticle of Camponotus japonicus Mayr. Arch Microbiol 2017; 199: 963– 970 [CrossRef] [PubMed]
    [Google Scholar]
  8. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  9. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  10. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57: 141– 145 [PubMed]
    [Google Scholar]
  11. Kelly KL. Inter-society colour council-national bureau of standards colour-name charts illustrated with centroid colours published in US. 1964
  12. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 2013; 103: 399– 408 [CrossRef] [PubMed]
    [Google Scholar]
  13. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55: 1149– 1153 [CrossRef] [PubMed]
    [Google Scholar]
  14. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24: 54– 63 [CrossRef]
    [Google Scholar]
  15. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993; 43: 805– 812 [CrossRef]
    [Google Scholar]
  16. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 4 1989; pp. 2453– 2492
    [Google Scholar]
  17. McKerrow J, Vagg S, Mckinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30: 178– 182 [CrossRef] [PubMed]
    [Google Scholar]
  18. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy Special Publicationvol. 6 Arlington: Society of Industrial Microbiology; 1980; pp. 227– 291
    [Google Scholar]
  19. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  20. Collins MD. Chemical Methods in Bacterial Systematics. In Goodfellow M, Minnikin DE. (editors) Isoprenoid Quinone Analyses in Bacterial Classification and Identification London: Academic Press; 1985; pp. 267– 284
    [Google Scholar]
  21. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16: 176– 178
    [Google Scholar]
  22. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980; 188: 221– 233 [CrossRef]
    [Google Scholar]
  23. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105: 307– 315 [CrossRef] [PubMed]
    [Google Scholar]
  24. Xiang W, Liu C, Wang X, du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61: 1165– 1169 [CrossRef] [PubMed]
    [Google Scholar]
  25. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50: 2031– 2036 [CrossRef] [PubMed]
    [Google Scholar]
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  33. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12: 195– 206 [Crossref]
    [Google Scholar]
  34. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  35. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
    [Google Scholar]
  36. Wayne LG, Brennerdj CRR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  37. Labeda DP, Hatano K, Kroppenstedt RM, Tamura T. Revival of the genus Lentzea and proposal for Lechevalieria gen. nov. Int J Syst Evol Microbiol 2001; 51: 1045– 1050 [CrossRef] [PubMed]
    [Google Scholar]
  38. Fang BZ, Han MX, Liu L, Zhang ZT, Liu WL et al. Lentzea cavernae sp. nov., an actinobacterium isolated from a karst cave sample, and emended description of the genus Lentzea. Int J Syst Evol Microbiol 2017; 67: 2357– 2362 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002698
Loading
/content/journal/ijsem/10.1099/ijsem.0.002698
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error