1887

Abstract

A strain (Hime 5-1) of lactic acid bacterium was isolated from the gut of the grasshopper Metrioptera engelhardti from a mountainous area of Nagano Prefecture, Japan. Strain Hime 5-1 had a low 16S rRNA gene sequence similarity to known lactic acid bacteria, with the closest recognized relatives being Lactobacillus tucceti (96.7 %), Lactobacillus furfuricola (96.5 %), Lactobacillus versmoldensis (96.3 %) and Lactobacillus nodensis (96.1 %). Comparative analyses of the rpoA and pheS gene sequences indicated that Hime 5-1 is not closely related to other Lactobacillus species. Strain Hime 5-1 is a Gram-stain-positive, catalase-negative and homofermentative bacterium with yellowish colonies, which contrasts with the whitish colonies of its closest recognized relatives. Based on phenotypic and genotypic properties, we conclude that the isolated bacterium represents a novel species of the genus Lactobacillus , for which the name Lactobacillus metriopterae sp. nov. is proposed. The type strain is Hime 5-1 (=JCM 31635=DSM 103730). 16S rRNA gene based high-throughput sequencing revealed that L. metriopterae is the dominant microbiota in the gut of Metrioptera engelhardti.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002694
2018-03-15
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1484.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002694&mimeType=html&fmt=ahah

References

  1. Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev 2013; 37: 699– 735 [CrossRef] [PubMed]
    [Google Scholar]
  2. Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 2015; 60: 17– 34 [CrossRef] [PubMed]
    [Google Scholar]
  3. Scardovi V, Trovatelli LD. New species of bifid bacteria from Apis mellifica L. and Apis indica F. A contribution to the taxonomy and biochemistry of the genus Bifidobacterium. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 1969; 123: 64– 88 [PubMed]
    [Google Scholar]
  4. Hayashi K, Maekawa I, Tanaka K, Ijyuin S, Shiwa Y et al. Purification and characterization of oxygen-inducible haem catalase from oxygen-tolerant Bifidobacterium asteroides. Microbiology 2013; 159: 89– 95 [CrossRef] [PubMed]
    [Google Scholar]
  5. Kawasaki S, Watanabe M, Fukiya S, Yokota A. Stress responses of Bifidobacteria: oxygen and bile acid as the stressors. In Mattareli P, Biavati B, Holzapfel WH, Wood BJB. (editors) The Bifidobacteria and Related Organisms London: Academic Press; 2018; pp. 131– 135 [Crossref]
    [Google Scholar]
  6. Killer J, Kopecný J, Mrázek J, Rada V, Benada O et al. Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2009; 59: 2020– 2024 [CrossRef] [PubMed]
    [Google Scholar]
  7. Killer J, Kopečný J, Mrázek J, Koppová I, Havlík J et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2011; 61: 1315– 1321 [CrossRef] [PubMed]
    [Google Scholar]
  8. Killer J, Dubná S, Sedláček I, Švec P. Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int J Syst Evol Microbiol 2014; 64: 152– 157 [CrossRef] [PubMed]
    [Google Scholar]
  9. Olofsson TC, Alsterfjord M, Nilson B, Butler E, Vásquez A. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int J Syst Evol Microbiol 2014; 64: 3109– 3119 [CrossRef] [PubMed]
    [Google Scholar]
  10. Kawasaki S, Kurosawa K, Miyazaki M, Yagi C, Kitajima Y et al. Lactobacillus floricola sp. nov., lactic acid bacteria isolated from mountain flowers. Int J Syst Evol Microbiol 2011; 61: 1356– 1359 [CrossRef] [PubMed]
    [Google Scholar]
  11. Kawasaki S, Kurosawa K, Miyazaki M, Sakamoto M, Ohkuma M et al. Lactobacillus ozensis sp. nov., isolated from mountain flowers. Int J Syst Evol Microbiol 2011; 61: 2435– 2438 [CrossRef] [PubMed]
    [Google Scholar]
  12. McFrederick QS, Wcislo WT, Taylor DR, Ishak HD, Dowd SE et al. Environment or kin: whence do bees obtain acidophilic bacteria?. Mol Ecol 2012; 21: 1754– 1768 [CrossRef] [PubMed]
    [Google Scholar]
  13. Kawasaki S, Satoh T, Todoroki M, Niimura Y. b-type dihydroorotate dehydrogenase is purified as a H2O2-forming NADH oxidase from Bifidobacterium bifidum. Appl Environ Microbiol 2009; 75: 629– 636 [CrossRef] [PubMed]
    [Google Scholar]
  14. Okada S, Uchimura T, Kozaki M. Laboratory Manual for Lactic Acid Bacteria Tokyo: Asakura-shoten; 1992
    [Google Scholar]
  15. Holdeman LV, Cato EP, Moore WEC. Anaerobe Laboratory Manual, 4th ed. Blacksburg, VA: Virginia Polytechnic Institute and State University; 1977
    [Google Scholar]
  16. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981
    [Google Scholar]
  17. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1989
    [Google Scholar]
  18. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 1985; 82: 6955– 6959 [CrossRef] [PubMed]
    [Google Scholar]
  19. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151: 2141– 2150 [CrossRef] [PubMed]
    [Google Scholar]
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  21. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  26. Chenoll E, Carmen Macián M, Aznar R. Lactobacillus tucceti sp. nov., a new lactic acid bacterium isolated from sausage. Syst Appl Microbiol 2006; 29: 389– 395 [CrossRef] [PubMed]
    [Google Scholar]
  27. Irisawa T, Tanaka N, Kitahara M, Sakamoto M, Ohkuma M et al. Lactobacillus furfuricola sp. nov., isolated from Nukadoko, rice bran paste for Japanese pickles. Int J Syst Evol Microbiol 2014; 64: 2902– 2906 [CrossRef] [PubMed]
    [Google Scholar]
  28. Kröckel L, Schillinger U, Franz CM, Bantleon A, Ludwig W. Lactobacillus versmoldensis sp. nov., isolated from raw fermented sausage. Int J Syst Evol Microbiol 2003; 53: 513– 517 [CrossRef] [PubMed]
    [Google Scholar]
  29. Kashiwagi T, Suzuki T, Kamakura T. Lactobacillus nodensis sp. nov., isolated from rice bran. Int J Syst Evol Microbiol 2009; 59: 83– 86 [CrossRef] [PubMed]
    [Google Scholar]
  30. Scheirlinck I, van der Meulen R, van Schoor A, Huys G, Vandamme P et al. Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs. Int J Syst Evol Microbiol 2007; 57: 1461– 1467 [CrossRef] [PubMed]
    [Google Scholar]
  31. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  32. Otsuka M, Okada S, Uchimura T, Komagata K. A simple method for the determination of stereoisomers of lactic acid by HPLC using an enantiomeric resolution column, and its application to identification of lactic acid bacteria. Seibutsu-kogaku Kaishi 1994; 72: 81– 86
    [Google Scholar]
  33. Manome A, Okada S, Uchimura T, Komagata K. The ratio of L-form to D-form of lactic acid as a criteria for the identification of lactic acid bacteria. J Gen Appl Microbiol 1998; 44: 371– 374 [CrossRef] [PubMed]
    [Google Scholar]
  34. Suzuki K, Hiraishi A, Yokota A. Methods for Classification and Identification of Microorganisms-General Approaches to Moleculargenetic and Molecular Biological Technique Tokyo: Springer-verlag; 2001
    [Google Scholar]
  35. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  36. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38: 101– 129 [Crossref]
    [Google Scholar]
  37. Sakamoto M, Ohkuma M. Bacteroides reticulotermitis sp. nov., isolated from the gut of a subterranean termite (Reticulitermes speratus). Int J Syst Evol Microbiol 2013; 63: 691– 695 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002694
Loading
/content/journal/ijsem/10.1099/ijsem.0.002694
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error