1887

Abstract

A novel actinobacterial strain, designated C12CA1, was isolated from forest soil in the conservation area of Chulabhorn dam, Thailand, and its taxonomic position was determined by using a polyphasic approach. Strain C12CA1 contained meso-2,6 diaminopimelic acid in the cell-wall peptidoglycan, and arabinose and galactose as diagnostic sugars of the whole-cell hydrolysate. On the basis of morphological and chemotaxonomic characteristics, strain C12CA1 was classified in the genus Amycolatopsis . It contained MK-9(H4) as the predominant menaquinone, C16 : 0, iso-C15 : 0 and iso-C16 : 0 as the major cellular fatty acids, and several phospholipids consisting of diphosphotidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, hydroxyphosphatidylethanolamine, phosphatidylinositol mannosides and an unidentified glucosamine-containing phospholipid. Based on 16S rRNA gene sequence and phylogenetic analyses, strain C12CA1 was closely related to Amycolatopsis vancoresmycina DSM 44592 (98.96 %) and Amycolatopsis pretoriensis JCM 12673 (98.82 %). The strain exhibited low DNA–DNA relatedness values with A. vancoresmycina DSM 44592 (6.9±0.2–11.6±1.9 %) and A. pretoriensis JCM 12673 (8.8±0.3–9.2±1.8 %). The DNA G+C content of strain C12CA1 was 69.8 mol%. Based on the results of polyphasic characterization, strain C12CA1 represents a novel species of the genus Amycolatopsis , for which the name Amycolatopsis silviterrae sp. nov. is proposed. The type strain is C12CA1 (=TBRC 1456=NBRC 111116).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002687
2018-03-13
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1455.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002687&mimeType=html&fmt=ahah

References

  1. Lechevalier MP, Prauser H, Labeda DP, Ruan J-S. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol 1986; 36: 29– 37 [CrossRef]
    [Google Scholar]
  2. Lee SD. Amycolatopsis ultiminotia sp. nov., isolated from rhizosphere soil, and emended description of the genus Amycolatopsis. Int J Syst Evol Microbiol 2009; 59: 1401– 1404 [CrossRef] [PubMed]
    [Google Scholar]
  3. Tang SK, Wang Y, Guan TW, Lee JC, Kim CJ et al. Amycolatopsis halophila sp. nov., a halophilic actinomycete isolated from a salt lake. Int J Syst Evol Microbiol 2010; 60: 1073– 1078 [CrossRef] [PubMed]
    [Google Scholar]
  4. Labeda DP, Goodfellow M. Family I Pseudonocardiaceae Embley, Smida and Stackebrandt 1989.205VP emend. Labeda, Goodfellow, Chun, Zhi and Li 2010a. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 5 New York: Springer; 2012; pp. 1302– 1305
    [Google Scholar]
  5. Tan GYA, Goodfellow M. Genus V. Amycolatopsis Lechevalier, Prauser, Labeda and Ruan 1986, 34VP emend. Lee 2009, 1403. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 5 New York: Springer; 2012; pp. 1334– 1358
    [Google Scholar]
  6. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42: D613– D616 [CrossRef] [PubMed]
    [Google Scholar]
  7. Zhang G, Wang L, Li J, Zhou Y. Amycolatopsis albispora sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2016; 66: 3860– 3864 [CrossRef] [PubMed]
    [Google Scholar]
  8. Tatar D, Sazak A, Guven K, Cetin D, Sahin N. Amycolatopsis cihanbeyliensis sp. nov., a halotolerant actinomycete isolated from a salt mine. Int J Syst Evol Microbiol 2013; 63: 3739– 3743 [CrossRef] [PubMed]
    [Google Scholar]
  9. Albarracín VH, Alonso-Vega P, Trujillo ME, Amoroso MJ, Abate CM. Amycolatopsis tucumanensis sp. nov., a copper-resistant actinobacterium isolated from polluted sediments. Int J Syst Evol Microbiol 2010; 60: 397– 401 [CrossRef] [PubMed]
    [Google Scholar]
  10. Labeda DP, Donahue JM, Williams NM, Sells SF, Henton MM. Amycolatopsis kentuckyensis sp. nov., Amycolatopsis lexingtonensis sp. nov. and Amycolatopsis pretoriensis sp. nov., isolated from equine placentas. Int J Syst Evol Microbiol 2003; 53: 1601– 1605 [CrossRef] [PubMed]
    [Google Scholar]
  11. Klykleung N, Tanasupawat S, Pittayakhajonwut P, Ohkuma M, Kudo T. Amycolatopsis stemonae sp. nov., isolated from a Thai medicinal plant. Int J Syst Evol Microbiol 2015; 65: 3894– 3899 [CrossRef] [PubMed]
    [Google Scholar]
  12. Duangmal K, Mingma R, Pathom-Aree W, Thamchaipenet A, Inahashi Y et al. Amycolatopsis samaneae sp. nov., isolated from roots of Samanea saman (Jacq.) Merr. Int J Syst Evol Microbiol 2011; 61: 951– 955 [CrossRef] [PubMed]
    [Google Scholar]
  13. Muramatsu H, Shahab N, Tsurumi Y, Hino M. A comparative study of Malaysian and Japanese actinomycetes using a simple identification method based on partial 16S rDNA sequence. Actinomycetologica 2003; 17: 33– 43 [CrossRef]
    [Google Scholar]
  14. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  15. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963; 72: 619– 629 [CrossRef] [PubMed]
    [Google Scholar]
  16. Yamada Y, Katsura K, Kawasaki H, Widyastuti Y, Saono S et al. Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the alpha-Proteobacteria. Int J Syst Evol Microbiol 2000; 50: 823– 829 [CrossRef] [PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  18. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  19. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  22. Felsenstein J. Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 1983; 14: 313– 333 [CrossRef]
    [Google Scholar]
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  24. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985; 22: 160– 174 [CrossRef] [PubMed]
    [Google Scholar]
  25. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  26. Verlander CP. Detection of horseradish peroxidase by colorimetry. In Kricka LJ. (editor) Nonisotopic DNA Probe Techniques New York: Academic Press; 1992; pp. 185– 201 [Crossref]
    [Google Scholar]
  27. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  28. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  29. Kelly KL. Inter-Society Color Council-National Bureau of Standard Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  30. Kumar V, Bharti A, Gusain O, Bisht GS. Scanning electron microscopy of Streptomyces without use of any chemical fixatives. Scanning 2011; 33: 446– 449 [CrossRef] [PubMed]
    [Google Scholar]
  31. Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007
    [Google Scholar]
  32. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24: 54– 63 [CrossRef]
    [Google Scholar]
  33. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  34. Williams ST, Cross T. Actinomycetes. Methods Microbiol 1971; 4: 295– 334 [Crossref]
    [Google Scholar]
  35. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28: 226– 231 [PubMed]
    [Google Scholar]
  36. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29: 319– 322 [CrossRef]
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note# 101. 2001
    [Google Scholar]
  39. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  40. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16: 176– 178
    [Google Scholar]
  41. Zucchi TD, Bonda AN, Frank S, Kim BY, Kshetrimayum JD et al. Amycolatopsis bartoniae sp. nov. and Amycolatopsis bullii sp. nov., mesophilic actinomycetes isolated from arid Australian soils. Antonie van Leeuwenhoek 2012; 102: 91– 98 [CrossRef] [PubMed]
    [Google Scholar]
  42. Bala S, Khanna R, Dadhwal M, Prabagaran SR, Shivaji S et al. Reclassification of Amycolatopsis mediterranei DSM 46095 as Amycolatopsis rifamycinica sp. nov. Int J Syst Evol Microbiol 2004; 54: 1145– 1149 [CrossRef] [PubMed]
    [Google Scholar]
  43. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33: 152– 155
    [Google Scholar]
  44. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195: 413– 418 [CrossRef] [PubMed]
    [Google Scholar]
  45. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  46. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20: 435– 443 [CrossRef]
    [Google Scholar]
  47. Kaur N, Kumar S, Mayilraj S. Genome sequencing and annotation of Amycolatopsis vancoresmycina strain DSM 44592T. Genom Data 2014; 2: 16– 17 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002687
Loading
/content/journal/ijsem/10.1099/ijsem.0.002687
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error