1887

Abstract

A Gram-stain-negative, short-rod, facultatively anaerobic, non-motile and red-pigmented bacterium, designated SAORIC-165, was isolated from a deep-seawater sample collected from the Pacific Ocean. The 16S rRNA gene sequence analysis showed that strain SAORIC-165 was most closely related to Pol012 (95.7 % sequence similarity) and formed a robust phylogenetic clade with other species of the genus in the phylum . Optimal growth of strain SAORIC-165 was observed at 10 °C, pH 7.0 and in the presence of 2.0–3.5 % (w/v) NaCl. The DNA G+C content of strain SAORIC-165 was 50.7 mol% and MK-9 was the predominant isoprenoid quinone. The major cellular fatty acids were summed feature 3 (C 7 and/or C 6), iso-C, anteiso-C, C and C. The major polar lipids constituted phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and unidentified phospholipids and aminolipids. On the basis of the taxonomic data obtained in this study, it was concluded that strain SAORIC-165 represented a novel species of the genus , for which the name sp. nov. is proposed. The type strain of is SAORIC-165 (=NBRC 110691=KCTC 52460).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002686
2018-04-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1384.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002686&mimeType=html&fmt=ahah

References

  1. Hedlund BP. Phylum XXIII. Verrucomicrobia phyl. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual® of Systematic Bacteriologyvol. 4 The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae and Planctomycetes New York: Springer; 2010; pp.795–841
    [Google Scholar]
  2. Zhang L, Xu Z. Assessing bacterial diversity in soil. J Soils Sediments 2008;8:379–388 [CrossRef]
    [Google Scholar]
  3. Bruce T, Martinez IB, Maia Neto O, Vicente AC, Kruger RH et al. Bacterial community diversity in the Brazilian Atlantic forest soils. Microb Ecol 2010;60:840–849 [CrossRef][PubMed]
    [Google Scholar]
  4. Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 2011;43:1450–1455 [CrossRef][PubMed]
    [Google Scholar]
  5. Haukka K, Heikkinen E, Kairesalo T, Karjalainen H, Sivonen K. Effect of humic material on the bacterioplankton community composition in boreal lakes and mesocosms. Environ Microbiol 2005;7:620–630 [CrossRef][PubMed]
    [Google Scholar]
  6. Freitas S, Hatosy S, Fuhrman JA, Huse SM, Welch DB et al. Global distribution and diversity of marine Verrucomicrobia. Isme J 2012;6:1499–1505 [CrossRef][PubMed]
    [Google Scholar]
  7. Cardman Z, Arnosti C, Durbin A, Ziervogel K, Cox C et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an arctic fjord of Svalbard. Appl Environ Microbiol 2014;80:3749–3756 [CrossRef][PubMed]
    [Google Scholar]
  8. Scheuermayer M, Gulder TA, Bringmann G, Hentschel U. Rubritalea marina gen. nov., sp. nov., a marine representative of the phylum 'Verrucomicrobia', isolated from a sponge (Porifera). Int J Syst Evol Microbiol 2006;56:2119–2124 [CrossRef][PubMed]
    [Google Scholar]
  9. Yoon J, Matsuo Y, Matsuda S, Adachi K, Kasai H et al. Rubritalea spongiae sp. nov. and Rubritalea tangerina sp. nov., two carotenoid- and squalene-producing marine bacteria of the family Verrucomicrobiaceae within the phylum 'Verrucomicrobia', isolated from marine animals. Int J Syst Evol Microbiol 2007;57:2337–2343 [CrossRef][PubMed]
    [Google Scholar]
  10. Kasai H, Katsuta A, Sekiguchi H, Matsuda S, Adachi K et al. Rubritalea squalenifaciens sp. nov., a squalene-producing marine bacterium belonging to subdivision 1 of the phylum 'Verrucomicrobia'. Int J Syst Evol Microbiol 2007;57:1630–1634 [CrossRef][PubMed]
    [Google Scholar]
  11. Yoon J, Matsuo Y, Matsuda S, Adachi K, Kasai H et al. Rubritalea sabuli sp. nov., a carotenoid- and squalene-producing member of the family Verrucomicrobiaceae, isolated from marine sediment. Int J Syst Evol Microbiol 2008;58:992–997 [CrossRef][PubMed]
    [Google Scholar]
  12. Yoon J, Matsuda S, Adachi K, Kasai H, Yokota A. Rubritalea halochordaticola sp. nov., a carotenoid-producing verrucomicrobial species isolated from a marine chordate. Int J Syst Evol Microbiol 2011;61:1515–1520 [CrossRef][PubMed]
    [Google Scholar]
  13. Lane DJ. 16S/23S rRNA Sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991; pp.115–147
    [Google Scholar]
  14. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  18. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro H. (editor) Mammalian Protein Metabolismvol. 3 New York: Academic Press; 1969; pp.21–132[Crossref]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  22. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  23. Choo YJ, Lee K, Song J, Cho JC. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum 'Verrucomicrobia'. Int J Syst Evol Microbiol 2007;57:532–537 [CrossRef][PubMed]
    [Google Scholar]
  24. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  25. Yang SJ, Choo YJ, Cho JC. Lutimonas vermicola gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from the marine polychaete Periserrula leucophryna. Int J Syst Evol Microbiol 2007;57:1679–1684 [CrossRef][PubMed]
    [Google Scholar]
  26. Cho JC, Giovannoni SJ. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the alpha-Proteobacteria. Int J Syst Evol Microbiol 2003;53:1031–1036 [CrossRef][PubMed]
    [Google Scholar]
  27. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  30. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002686
Loading
/content/journal/ijsem/10.1099/ijsem.0.002686
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error