1887

Abstract

A Gram-stain-negative, pink-coloured, non-motile and gamma radiation-resistant bacterium, designated strain IMCC1711, was isolated from a freshwater sample collected from an artificial pond (Inkyong Pond). The 16S rRNA gene sequence analysis showed that strain IMCC1711 was most closely related to 3ax (94.2 %) and formed a robust phylogenetic clade with other species of the genus Optimal growth of strain MCC1711 was observed at 25 °C and pH 7.0 without NaCl. Strain IMCC1711 exhibited high resistance to gamma radiation. The DNA G+C content of strain IMCC1711 was 59.1 mol% and MK-8 was the predominant isoprenoid quinone. Major fatty acid constituents of the strain were Cω8, C, summed feature 3 (C 6 and/or C 7) and C 6. The major polar lipids constituted phosphatidylethanolamine, one unidentified phosphoglycolipid and two unidentified glycolipids. On the basis of taxonomic data obtained in this study, it was concluded that strain IMCC1711 represented a novel species of the genus for which the name sp. nov. is proposed. The type strain of is IMCC1711 (KCTC 52494=KACC 18979=NBRC 112440).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002683
2018-04-01
2020-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1372.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002683&mimeType=html&fmt=ahah

References

  1. Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 1994;65:27–33 [CrossRef][PubMed]
    [Google Scholar]
  2. Brooks BW, Murray RGE. Nomenclature for "Micrococcus radiodurans" and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 1981;31:353–360 [CrossRef]
    [Google Scholar]
  3. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF et al. Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 2005;71:5225–5235 [CrossRef][PubMed]
    [Google Scholar]
  4. Phillips RW, Wiegel J, Berry CJ, Fliermans C, Peacock AD et al. Kineococcus radiotolerans sp. nov., a radiation-resistant, gram-positive bacterium. Int J Syst Evol Microbiol 2002;52:933–938 [CrossRef][PubMed]
    [Google Scholar]
  5. Green PN, Bousfield IJ. Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int J Syst Bacteriol 1983;33:875–877 [CrossRef]
    [Google Scholar]
  6. Ferreira AC, Nobre MF, Moore E, Rainey FA, Battista JR et al. Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles 1999;3:235–238 [CrossRef][PubMed]
    [Google Scholar]
  7. DiRuggiero J, Santangelo N, Nackerdien Z, Ravel J, Robb FT. Repair of extensive ionizing-radiation DNA damage at 95 degrees C in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 1997;179:4643–4645 [CrossRef][PubMed]
    [Google Scholar]
  8. Jolivet E, Corre E, L'Haridon S, Forterre P, Prieur D. Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 2004;8:219–227 [CrossRef][PubMed]
    [Google Scholar]
  9. Yoo SH, Weon HY, Kim SJ, Kim YS, Kim BY et al. Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2010;60:1191–1195 [CrossRef][PubMed]
    [Google Scholar]
  10. Srinivasan S, Lee JJ, Lim S, Joe M, Kim MK. Deinococcus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 2012;62:2844–2850 [CrossRef][PubMed]
    [Google Scholar]
  11. Dong N, Li HR, Yuan M, Zhang XH, Yu Y. Deinococcus antarcticus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015;65:331–335 [CrossRef][PubMed]
    [Google Scholar]
  12. Sun Joo E, Jin Lee J, Kang MS, Lim S, Jeong SW et al. Deinococcus actinosclerus sp. nov., a novel bacterium isolated from soil of a rocky hillside. Int J Syst Evol Microbiol 2016;66:1003–1008 [CrossRef][PubMed]
    [Google Scholar]
  13. Jeon SH, Kang MS, Joo ES, Kim EB, Lim S et al. Deinococcus persicinus sp. nov., a radiation-resistant bacterium from soil. Int J Syst Evol Microbiol 2016;66:5077–5082 [CrossRef][PubMed]
    [Google Scholar]
  14. De Groot A, Chapon V, Servant P, Christen R, Saux MF et al. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 2005;55:2441–2446 [CrossRef][PubMed]
    [Google Scholar]
  15. Hussain F, Khan IU, Habib N, Xian WD, Hozzein WN et al. Deinococcus saudiensis sp. nov., isolated from desert. Int J Syst Evol Microbiol 2016;66:5106–5111 [CrossRef][PubMed]
    [Google Scholar]
  16. Kämpfer P, Lodders N, Huber B, Falsen E, Busse HJ. Deinococcus aquatilis sp. nov., isolated from water. Int J Syst Evol Microbiol 2008;58:2803–2806 [CrossRef][PubMed]
    [Google Scholar]
  17. Srinivasan S, Kim MK, Lim S, Joe M, Lee M. Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. Int J Syst Evol Microbiol 2012;62:1265–1270 [CrossRef][PubMed]
    [Google Scholar]
  18. Im WT, Jung HM, Ten LN, Kim MK, Bora N et al. Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2008;58:2348–2353 [CrossRef][PubMed]
    [Google Scholar]
  19. Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R et al. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 2004;27:636–645 [CrossRef][PubMed]
    [Google Scholar]
  20. Shashidhar R, Bandekar JR. Deinococcus piscis sp. nov., a radiation-resistant bacterium isolated from a marine fish. Int J Syst Evol Microbiol 2009;59:2714–2717 [CrossRef][PubMed]
    [Google Scholar]
  21. Chen W, Wang B, Hong H, Yang H, Liu SJ. Deinococcus reticulitermitis sp. nov., isolated from a termite gut. Int J Syst Evol Microbiol 2012;62:78–83 [CrossRef][PubMed]
    [Google Scholar]
  22. Song J, Yang SJ, Cho JC. "Bring to lab" of 19 novel species among 60 isolates retrieved from a freshwater pond. J Microbiol Biotechnol 2007;17:168–175[PubMed]
    [Google Scholar]
  23. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  25. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  29. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971;20:406–416 [CrossRef]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  31. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  32. Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 1982;43:777–780[PubMed]
    [Google Scholar]
  33. Srinivasan S, Lee JJ, Lim SY, Joe MH, Im SH et al. Deinococcus radioresistens sp. nov., a UV and gamma radiation-resistant bacterium isolated from mountain soil. Antonie van Leeuwenhoek 2015;107:539–545 [CrossRef][PubMed]
    [Google Scholar]
  34. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[PubMed][Crossref]
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  36. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  37. Collins MD, Shah HN, Minnikin DE. A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J Appl Bacteriol 1980;48:277–282 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002683
Loading
/content/journal/ijsem/10.1099/ijsem.0.002683
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error