1887

Abstract

A novel bioplastic-degrading actinomycete, strain SCM_MK2-4, was isolated from paddy soil in Thailand. The 16S rRNA gene sequence showed that strain SCM_MK2-4 belonged to the genus , with the highest sequence similarity to JCM 3275 (99.4 %), and was phylogenetically clustered with this strain along with JCM 3141 (99.3 %), DSM 44213 (99.2 %), DSM 44594 (99.0 %), M29 (98.9 %), subsp. DSM 44586 (98.8 %), subsp. DSM 44409 (98.5 %), DSM 40040 (98.4 %) and GY080 (98.3 %). A combination of DNA–DNA hybridization results ranging from 42.8±3.2 to 66.2±1.4 % with the type strains of and and some different phenotypic characteristics indicated that the strain could be distinguished from its closest phylogenetic neighbours. Whole-cell hydrolysates of the strain were shown to contain -diaminopimelic acid, arabinose, galactose, glucose, ribose, mannose, rhamnose and xylose. The predominant menaquinone was MK-9(H). The major cellular fatty acid profile consisted of iso-C, iso-C, summed feature 3 (C 7 and/or iso-C 2OH) and C. The polar lipid composition of the strain consisted of phosphatidyl--methylethylethanolamine, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylglycerol, aminophospholipids, an unidentified phospholipid and two unidentified glycolipids. The G+C content of the genomic DNA was 68.2 mol%. On the basis of phylogenetic analyses, DNA–DNA hybridization experimentation and the phenotypic characteristics, it was concluded that strain SCM_MK2-4 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SCM_MK2-4 (=TBRC 7186=JCM 32134).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002682
2018-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1448.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002682&mimeType=html&fmt=ahah

References

  1. Lechevalier MP, Prauser H, Labeda DP, Ruan JS. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol 1986; 36:29–37 [View Article]
    [Google Scholar]
  2. Embley MT, Smida J, Stackebrandt E. The phylogeny of mycolate-less wall chemotype IV actinomycetes and description of Pseudonocardiaceae fam. nov. Syst Appl Microbiol 1988; 11:44–52 [View Article]
    [Google Scholar]
  3. Sensi P, Greco AM, Ballotta R. Rifomycin. I. Isolation and properties of rifomycin B and rifomycin complex. Antibiot Annu 1959; 7:262–270[PubMed]
    [Google Scholar]
  4. Wink JM, Kroppenstedt RM, Ganguli BN, Nadkarni SR, Schumann P et al. Three new antibiotic producing species of the genus Amycolatopsis, Amycolatopsis balhimycina sp. nov., A. tolypomycina sp. nov., A. vancoresmycina sp. nov., and description of Amycolatopsis keratiniphila subsp. keratiniphila subsp. nov. and A. keratiniphila subsp. nogabecina subsp. nov. Syst Appl Microbiol 2003; 26:38–46 [View Article][PubMed]
    [Google Scholar]
  5. Bala S, Khanna R, Dadhwal M, Prabagaran SR, Shivaji S et al. Reclassification of Amycolatopsis mediterranei DSM 46095 as Amycolatopsis rifamycinica sp. nov. Int J Syst Evol Microbiol 2004; 54:1145–1149 [View Article][PubMed]
    [Google Scholar]
  6. Pranamuda H, Tokiwa Y. Degradation of poly(l-lactide) by strains belonging to genus Amycolatopsis . Biotechnol Lett 1999; 21:901–905 [View Article]
    [Google Scholar]
  7. Jarerat A, Pranamuda H, Tokiwa Y. Poly(l-lactide)-degrading activity in various actinomycetes. Macromol Biosci 2002; 2:420–428 [View Article]
    [Google Scholar]
  8. Li F, Wang S, Liu W, Chen G. Purification and characterization of poly(l-lactic acid)-degrading enzymes from Amycolatopsis orientalis ssp. orientalis . FEMS Microbiol Lett 2008; 282:52–58 [View Article][PubMed]
    [Google Scholar]
  9. Chomchoei A, Pathom-Aree W, Yokota A, Kanongnuch C, Lumyong S. Amycolatopsis thailandensis sp. nov., a poly(l-lactic acid)-degrading actinomycete, isolated from soil. Int J Syst Evol Microbiol 2011; 61:839–843 [View Article][PubMed]
    [Google Scholar]
  10. Penkhrue W, Khanongnuch C, Masaki K, Pathom-Aree W, Punyodom W et al. Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World J Microbiol Biotechnol 2015; 31:1431–1442 [View Article][PubMed]
    [Google Scholar]
  11. Penkhrue W, Kanpiengjai A, Khanongnuch C, Masaki K, Pathom-Aree W et al. Effective enhancement of polylactic acid-degrading enzyme production by Amycolatopsis sp. strain SCM_MK2-4 using statistical and one-factor-at-a-time approaches. Prep Biochem Biotechnol 2017; 47:730–738 [View Article][PubMed]
    [Google Scholar]
  12. Tomita K, Tsuji H, Nakajima T, Kikuchi Y, Ikarashi K et al. Degradation of poly(d-lactic acid) by a thermophile. Polym Degrad Stab 2003; 81:167–171 [View Article]
    [Google Scholar]
  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  14. Jacobson E, Grauville W, Fogs CE. Color Harmony Manual, 4th ed. Chicago: Container Corporation of America; 1958
    [Google Scholar]
  15. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  16. Kilian M. Rapid identification of Actinomycetaceae and related bacteria. J Clin Microbiol 1978; 8:127–133[PubMed]
    [Google Scholar]
  17. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231[PubMed]
    [Google Scholar]
  18. Mikami H, Ishida Y. Post-column fluorometric detection of reducing sugars in high performance liquid chromatography using arginine. Bunseki kagaku 1983; 32:E207E210 [View Article]
    [Google Scholar]
  19. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  20. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36[PubMed] [Crossref]
    [Google Scholar]
  21. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980; 188:221–233 [View Article]
    [Google Scholar]
  22. Yano I, Saito K, Furukawa Y, Kusunose M. Structural analysis of molecular species of nocardomycolic acids from Nocardia erythropolis by the combined system of gas chromatography and mass spectrometry. FEBS Lett 1972; 21:215–219 [View Article][PubMed]
    [Google Scholar]
  23. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  25. Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T. Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 1999; 49:1761–1767 [View Article][PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  27. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  29. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  33. Everest GJ, Meyers PR. The use of gyrB sequence analysis in the phylogeny of the genus Amycolatopsis . Antonie van Leeuwenhoek 2009; 95:1–11 [View Article][PubMed]
    [Google Scholar]
  34. Everest GJ, Cook AE, Kirby BM, Meyers PR. Evaluation of the use of recN sequence analysis in the phylogeny of the genus Amycolatopsis . Antonie van Leeuwenhoek 2011; 100:483–496 [View Article][PubMed]
    [Google Scholar]
  35. Raeder U, Broda P. Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1985; 1:17–20 [View Article]
    [Google Scholar]
  36. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  37. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  38. Yassin AF, Haggenel B, Budzikiewicz H, Schaal KP. Fatty acid and polar lipid composition of the genus Amycolatopsis: application of fast atom bombardment-mass spectrometry to structure analysis of underivatized phospholipids. Int J Syst Bacteriol 1993; 43:414–420 [View Article]
    [Google Scholar]
  39. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  40. Everest GJ, Le Roes-Hill M, Rohland J, Enslin S, Meyers PR. Amycolatopsis roodepoortensis sp. nov. and Amycolatopsis speibonae sp. nov.: antibiotic-producing actinobacteria isolated from South African soils. J Antibiot 2014; 67:813–818 [View Article][PubMed]
    [Google Scholar]
  41. Wink J, Gandhi J, Kroppenstedt RM, Seibert G, Sträubler B et al. Amycolatopsis decaplanina sp. nov., a novel member of the genus with unusual morphology. Int J Syst Evol Microbiol 2004; 54:235–239 [View Article][PubMed]
    [Google Scholar]
  42. Henssen A, Kothe HW, Kroppenstedt RM. Transfer of Pseudonocardia azurea and "Pseudonocardia fastidiosa" to the genus Amycolatopsis, with emended species description. Int J Syst Bacteriol 1987; 37:292–295 [View Article]
    [Google Scholar]
  43. Tan GY, Robinson S, Lacey E, Brown R, Kim W et al. Amycolatopsis regifaucium sp. nov., a novel actinomycete that produces kigamicins. Int J Syst Evol Microbiol 2007; 57:2562–2567 [View Article][PubMed]
    [Google Scholar]
  44. Stackebrandt E, Kroppenstedt RM, Wink J, Schumann P. Reclassification of Amycolatopsis orientalis subsp. lurida Lechevalier et al. 1986 as Amycolatopsis lurida sp. nov., comb. nov. Int J Syst Evol Microbiol 2004; 54:267–268 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002682
Loading
/content/journal/ijsem/10.1099/ijsem.0.002682
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error