1887

Abstract

A rod-shaped, non-endospore-forming and non-motile bacterium, strain DL-329, was isolated from the above-ground part of a plant, Androsace koso-poljanskii Ovcz. (Primulaceae), at the the State Natural Reserve ‘Belogorie’, Russia. On the basis of 16S rRNA gene sequence comparisons, the strain clustered with members of the genus Rathayibacter , showing the highest sequence similarity to Rathayibacter tritici (98.89 %), Rathayibacter rathayi (98.82 %) and Rathayibacter festucae (98.82 %). The DNA hybridization experiments demonstrated that strain DL-329 represents a separate genomic species. The results of comparative studies of physiological and chemotaxonomic characteristics, including cell-wall sugar patterns, polar lipid profiles, and the matrix-assisted laser desorption/ionization time-of-flight mass spectra of bacterial cells, allowed clear differentiation of VKM Ac-2121 from the recognized Rathayibacter species at the phenotypic level. Based on the data obtained, a new species, Rathayibacter oskolensis sp. nov., is proposed, with DL-329 (=VKM Ac-2121=LMG 22542) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002681
2018-03-08
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1442.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002681&mimeType=html&fmt=ahah

References

  1. Evtushenko LI, Dorofeeva LV. Genus XXII. Rathayibacter Zgurskaya, Evtushenko, Akimov and Kalakoutskii 1993, 147VP. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI et al. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 5 New York, Dordrecht, Heidelberg, London: Springer; 2012; pp. 953– 964
    [Google Scholar]
  2. Sasaki J, Chijimatsu M, Suzuki K. Taxonomic significance of 2,4-diaminobutyric acid isomers in the cell wall peptidoglycan of actinomycetes and reclassification of Clavibacter toxicus as Rathayibacter toxicus comb. nov. Int J Syst Bacteriol 1998; 48: 403– 410 [CrossRef] [PubMed]
    [Google Scholar]
  3. Zgurskaya HI, Evtushenko LI, Akimov VN, Kalakoutskii LV. Rathayibacter gen. nov., including the species Rathayibacter rathayi comb. nov., Rathayibacter tritici comb. nov., Rathayibacter iranicus comb. nov., and six strains from annual grasses. Int J Syst Bacteriol 1993; 43: 143– 149 [CrossRef]
    [Google Scholar]
  4. Dorofeeva LV, Evtushenko LI, Krausova VI, Karpov AV, Subbotin SA et al. Rathayibacter caricis sp. nov. and Rathayibacter festucae sp. nov., isolated from the phyllosphere of Carex sp. and the leaf gall induced by the nematode Anguina graminis on Festuca rubra L., respectively. Int J Syst Evol Microbiol 2002; 52: 1917– 1923 [CrossRef] [PubMed]
    [Google Scholar]
  5. Murray TD, Schroeder BK, Schneider WL, Luster DG, Sechler A et al. Rathayibacter toxicus, other Rathayibacter species inducing bacterial head blight of grasses, and the potential for livestock poisonings. Phytopathology 2017; 107: 804– 815 [CrossRef] [PubMed]
    [Google Scholar]
  6. Riley IT, Swart A, Postnikova E, Agarkova I, Vidaver A et al. New association of a toxigenic Rathayibacter sp. and Anguina woodi in Ehrhata villosa var. villosa in South Africa. Phytopathology 2004; 94: S88 [Crossref]
    [Google Scholar]
  7. Starodumova IP, Tarlachkov SV, Prisyazhnaya NV, Dorofeeva LV, Ariskina EV et al. Draft genome sequence of Rathayibacter sp. strain VKM Ac-2630 isolated from leaf gall induced by the knapweed nematode Mesoanguina picridis on Acroptilon repens. Genome Announc 2017; 5: e00650-17 [CrossRef] [PubMed]
    [Google Scholar]
  8. Vasilenko OV, Starodumova IP, Tarlachkov SV, Dorofeeva LV, Avtukh AN et al. Draft genome sequence of "Rathayibacter tanaceti" strain VKM Ac-2596 isolated from Tanacetum vulgare infested by a foliar nematode. Genome Announc 2016; 4: e00512-16 [CrossRef] [PubMed]
    [Google Scholar]
  9. Riley IT, Mckay AC. Specificity of the adhesion of some plant pathogenic micro-organisms to the cuticle of nematodes in the genus Anguina (Nematoda: Anguinidae). Nematologica 1990; 36: 90– 103 [CrossRef]
    [Google Scholar]
  10. Singh SK, Hodda M, Ash GJ. Plant-parasitic nematodes of potential phytosanitary importance, their main hosts and reported yield losses. EPPO Bulletin 2013; 43: 334– 374 [CrossRef]
    [Google Scholar]
  11. Vidaver AK. The plant pathogenic corynebacteria. Annu Rev Microbiol 1982; 36: 495– 517 [CrossRef] [PubMed]
    [Google Scholar]
  12. McKay AC, Ophel KM. Toxigenic Clavibacter/Anguina associations infecting grass seedheads. Annu Rev Phytopathol 1993; 31: 151– 167 [CrossRef] [PubMed]
    [Google Scholar]
  13. Degtyar’ OV, Chernyavskikh VI. The environment-forming role of endemic species in calciphilous communities of the southern Central Russian Upland. Russ J Ecol 2006; 37: 143– 145 [CrossRef]
    [Google Scholar]
  14. Dorofeeva LV, Krausova VI, Evtushenko LI, Tiedje JM. Agromyces albus sp. nov., isolated from a plant (Androsace sp.). Int J Syst Evol Microbiol 2003; 53: 1435– 1438 [CrossRef] [PubMed]
    [Google Scholar]
  15. Evtushenko LI, Dorofeeva LV, Subbotin SA, Cole JR, Tiedje JM. Leifsonia poae gen. nov., sp. nov., isolated from nematode galls on Poa annua, and reclassification of 'Corynebacterium aquaticum' Leifson 1962 as Leifsonia aquatica (ex Leifson 1962) gen. nov., nom. rev., comb. nov. and Clavibacter xyli Davis et al. 1984 with two subspecies as Leifsonia xyli (Davis et al. 1984) gen. nov., comb. nov. Int J Syst Evol Microbiol 2000; 50: 371– 380 [CrossRef] [PubMed]
    [Google Scholar]
  16. Pridham TG, Gottlieb D. The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J Bacteriol 1948; 56: 107– 114 [PubMed]
    [Google Scholar]
  17. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38: 101– 129 [Crossref]
    [Google Scholar]
  18. Streshinskaya GM, Naumova IB, Panina LI. Cell wall composition of Streptomyces chrysomallus producing the antibiotic aurantin. Mikrobiologiya 1979; 48: 814– 819
    [Google Scholar]
  19. Prisyazhnaya NV, Plotnikova EG, Bueva OV, Korsakova ES, Dorofeeva LV et al. Application of MALDI-TOF mass spectrometry for differentiation of closely related species of the “Arthrobacter crystallopoietes” phylogenetic group. Microbiology 2012; 81: 696– 701 [CrossRef]
    [Google Scholar]
  20. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001; 2.4.1– 2.4.2 [CrossRef] [PubMed]
    [Google Scholar]
  21. Evtushenko LI, Dorofeeva LV, Krausova VI, Gavrish EY, Yashina SG et al. Okibacterium fritillariae gen. nov., sp. nov., a novel genus of the family Microbacteriaceae. Int J Syst Evol Microbiol 2002; 52: 987– 993 [CrossRef] [PubMed]
    [Google Scholar]
  22. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  23. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  25. Cavalli-Sforza LL, Edwards AW. Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 1967; 19: 233– 257 [PubMed]
    [Google Scholar]
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  27. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp. 21– 132 [Crossref]
    [Google Scholar]
  28. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  29. Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 2017; 45: D507– D516 [CrossRef] [PubMed]
    [Google Scholar]
  30. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  31. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  33. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Microbiol 1980; 48: 495– 470
    [Google Scholar]
  34. Streshinskaya GM, Tul’skaya EM, Potekhina NV, Shashkov AS, Senchenkova SN et al. Glycopolymers of the cell walls of actinobacteria of the genus Rathayibacter. Achievements in the Life Sciences 2016; 10: S52
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002681
Loading
/content/journal/ijsem/10.1099/ijsem.0.002681
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error