1887

Abstract

Previously, experimental DNA–DNA hybridization (DDH) between Shewanella haliotis JCM 14758 and Shewanella algae JCM 21037 had suggested that the two strains could be considered different species, despite minimal phenotypic differences. The recent isolation of Shewanella sp. MN-01, with 99 % 16S rRNA gene identity to S. algae and S. haliotis , revealed a potential taxonomic problem between these two species. In this study, we reassessed the nomenclature of S. haliotis and S. algae using available whole-genome sequences. The whole-genome sequence of S. haliotis JCM 14758 and ten S. algae strains showed ≥97.7 % average nucleotide identity and >78.9 % digital DDH, clearly above the recommended species thresholds. According to the rules of priority and in view of the results obtained, S. haliotis is to be considered a later heterotypic synonym of S. algae . Because the whole-genome sequence of Shewanella sp. strain MN-01 shares >99 % ANI with S. algae JCM 14758, it can be confidently identified as S. algae .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002678
2018-03-05
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1356.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002678&mimeType=html&fmt=ahah

References

  1. Lovley D. Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In Rosenberg E. (editor) The Prokaryotes Springer-Verlag; 2013; pp. 287– 305 [Crossref]
    [Google Scholar]
  2. Cooper RE. Breathing iron: molecular mechanism of microbial iron reduction by Shewanella oneidensis. Manual of Environmental Microbiology, 4th ed. Washington, DC: American Society of Microbiology; 2016
    [Google Scholar]
  3. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME et al. Towards environmental systems biology of Shewanella. Nat Rev Microbiol 2008; 6: 592– 603 [CrossRef] [PubMed]
    [Google Scholar]
  4. Konstantinidis KT, Serres MH, Romine MF, Rodrigues JL, Auchtung J et al. Comparative systems biology across an evolutionary gradient within the Shewanella genus. Proc Natl Acad Sci USA 2009; 106: 15909– 15914 [CrossRef] [PubMed]
    [Google Scholar]
  5. Ong WK, Vu TT, Lovendahl KN, Llull JM, Serres MH et al. Comparisons of Shewanella strains based on genome annotations, modeling, and experiments. BMC Syst Biol 2014; 8: 31 [CrossRef] [PubMed]
    [Google Scholar]
  6. Rodrigues JL, Serres MH, Tiedje JM. Large-scale comparative phenotypic and genomic analyses reveal ecological preferences of Shewanella species and identify metabolic pathways conserved at the genus level. Appl Environ Microbiol 2011; 77: 5352– 5360 [CrossRef] [PubMed]
    [Google Scholar]
  7. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME et al. Towards environmental systems biology of Shewanella. Nat Rev Microbiol 2008; 6: 592– 603 [CrossRef] [PubMed]
    [Google Scholar]
  8. Hau HH, Gralnick JA. Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 2007; 61: 237– 258 [CrossRef] [PubMed]
    [Google Scholar]
  9. Shi L, Rosso KM, Clarke TA, Richardson DJ, Zachara JM et al. Molecular underpinnings of Fe(III) oxide reduction by Shewanella oneidensis MR-1. Front Microbiol 2012; 3: 50 [CrossRef] [PubMed]
    [Google Scholar]
  10. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 1999; 49: 705– 724 [CrossRef] [PubMed]
    [Google Scholar]
  11. Janda JM, Abbott SL. The genus Shewanella: from the briny depths below to human pathogen. Crit Rev Microbiol 2014; 40: 293– 312 [CrossRef] [PubMed]
    [Google Scholar]
  12. Kotaki Y, Oshima Y, Yasumoto T. Bacterial transformation of paralytic shellfish toxins in coral reef crabs and a marine snail. Nippon Suisan Gakkaishi 1985; 51: 1009– 1013 [CrossRef]
    [Google Scholar]
  13. Szeinbaum N, Lin H, Brandes JA, Taillefert M, Glass JB et al. Microbial manganese(III) reduction fuelled by anaerobic acetate oxidation. Environ Microbiol 2017; 19: 3475– 3486 [CrossRef] [PubMed]
    [Google Scholar]
  14. Wayne LG. International Committee on Systematic Bacteriology: announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Zentralbl Bakteriol Mikrobiol Hyg A 1988; 268: 433– 434 [PubMed]
    [Google Scholar]
  15. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52: 1043– 1047 [CrossRef] [PubMed]
    [Google Scholar]
  16. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  17. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  18. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102: 2567– 2572 [CrossRef] [PubMed]
    [Google Scholar]
  19. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2: 117– 134 [CrossRef] [PubMed]
    [Google Scholar]
  20. Garrity GM. A new genomics-driven taxonomy of bacteria and archaea: are we there yet?. J Clin Microbiol 2016; 54: 1956– 1963 [CrossRef] [PubMed]
    [Google Scholar]
  21. Kim KK, Kim YO, Park S, Kang SJ, Nam BH et al. Shewanella upenei sp. nov., a lipolytic bacterium isolated from bensasi goatfish Upeneus bensasi. J Microbiol 2011; 49: 381– 386 [CrossRef] [PubMed]
    [Google Scholar]
  22. Verma P, Pandey PK, Gupta AK, Kim HJ, Baik KS et al. Shewanella indica sp. nov., isolated from sediment of the Arabian Sea. Int J Syst Evol Microbiol 2011; 61: 2058– 2064 [CrossRef] [PubMed]
    [Google Scholar]
  23. Sucharita K, Sasikala C, Park SC, Baik KS, Seong CN et al. Shewanella chilikensis sp. nov., a moderately alkaliphilic gammaproteobacterium isolated from a lagoon. Int J Syst Evol Microbiol 2009; 59: 3111– 3115 [CrossRef] [PubMed]
    [Google Scholar]
  24. Kim D, Baik KS, Kim MS, Jung BM, Shin TS et al. Shewanella haliotis sp. nov., isolated from the gut microflora of abalone, Haliotis discus hannai. Int J Syst Evol Microbiol 2007; 57: 2926– 2931 [CrossRef] [PubMed]
    [Google Scholar]
  25. Luo C, Walk ST, Gordon DM, Feldgarden M, Tiedje JM et al. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci USA 2011; 108: 7200– 7205 [CrossRef] [PubMed]
    [Google Scholar]
  26. Simidu U, Kita-Tsukamoto K, Yasumoto T, Yotsu M. Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int J Syst Bacteriol 1990; 40: 331– 336 [CrossRef] [PubMed]
    [Google Scholar]
  27. Caccavo F, Blakemore RP, Lovley DR. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay Estuary, New Hampshire. Appl Environ Microbiol 1992; 58: 3211– 3216 [PubMed]
    [Google Scholar]
  28. Workman DJ, Woods SL, Gorby YA, Fredrickson JK, Truex MJ et al. Microbial reduction of Vitamin B12 by Shewanella alga strain BrY with subsequent transformation of carbon tetrachloride. Environ Sci Technol 1997; 31: 2292– 2297 [CrossRef]
    [Google Scholar]
  29. Vinogradov E, Korenevsky A, Beveridge TJ. The structure of the O-specific polysaccharide chain of the Shewanella algae BrY lipopolysaccharide. Carbohydr Res 2003; 338: 385– 388 [CrossRef] [PubMed]
    [Google Scholar]
  30. Nozue H, Hayashi T, Hashimoto Y, Ezaki T, Hamasaki K et al. Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description of S. alga Simidu et al., 1990, 335. Int J Syst Bacteriol 1992; 42: 628– 634 [CrossRef] [PubMed]
    [Google Scholar]
  31. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2015; [CrossRef] [PubMed]
    [Google Scholar]
  32. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512– 526 [CrossRef] [PubMed]
    [Google Scholar]
  33. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  34. Cimmino T, Olaitan AO, Rolain JM. Whole genome sequence to decipher the resistome of Shewanella algae, a multidrug-resistant bacterium responsible for pneumonia, Marseille, France. Expert Rev Anti Infect Ther 2016; 14: 269– 275 [CrossRef] [PubMed]
    [Google Scholar]
  35. Javanaud C, Michotey V, Guasco S, Garcia N, Anschutz P et al. Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level. Res Microbiol 2011; 162: 848– 857 [CrossRef] [PubMed]
    [Google Scholar]
  36. Aigle A, Michotey V, Bonin P. Draft-genome sequence of Shewanella algae strain C6G3. Stand Genomic Sci 2015; 10: 43 [CrossRef] [PubMed]
    [Google Scholar]
  37. Hong HH, Choi H, Cheon S, Lee HG, Park C et al. Genome sequences of two Shewanella spp. isolated from the gut of the sea Cucumber Apostichopus japonicus (Selenka, 1867). Genome Announc 2017; 5: e00674-17 [CrossRef] [PubMed]
    [Google Scholar]
  38. Clark IC, Melnyk RA, Engelbrektson A, Coates JD. Structure and evolution of chlorate reduction composite transposons. MBio 2013; 4: e00379-13 [CrossRef] [PubMed]
    [Google Scholar]
  39. Yang JL, Guo XP, Chen YR, Gao W, Ding DW et al. Draft genome sequence of Shewanella sp. ECSMB14102, a mussel recruitment-promoting bacterium isolated from the East China Sea. Genome Announc 2015; 3: [CrossRef] [PubMed]
    [Google Scholar]
  40. Rodriguez-Rojas LM, Konstantinidis KT. The enveomics collection: a toolbox for pecialized analyses of microbial genomes and metagenoms. PeerJ Preprints 2016; 4: e1900v1
    [Google Scholar]
  41. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45: D535– D542 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002678
Loading
/content/journal/ijsem/10.1099/ijsem.0.002678
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error