1887

Abstract

A Gram-stain-negative, non-motile and ovoid or rod-shaped bacterial strain, DBTF-15, was isolated from a tidal flat sediment on the Yellow Sea in South Korea. Strain DBTF-15 grew optimally at 25–30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences revealed that strain DBTF-15 joined the cluster comprising the type strains of species of the genus . Strain DBTF-15 exhibited higher 16S rRNA gene sequence similarity values to the type strains (96.5–96.7 %) of and than to those (94.6–96.1 %) of the three species of the genus . It exhibited 16S rRNA gene sequence similarity values of less than 93.9 % to the type strains of the other recognized species. Strain DBTF-15 contained Q-10 as the predominant ubiquinone and C 7 as the major fatty acid. The major polar lipids of strain DBTF-15 were phosphatidylcholine, phosphatidylglycerol and one unidentified aminolipid. The DNA G+C content of strain DBTF-15 was 68.7 mol%. The chemotaxonomic data and other differential phenotypic properties made it possible to distinguish strain DBTF-15 from the genera and . On the basis of the data presented, strain DBTF-15 constitutes a novel genus and species within the class , for which the name gen. nov., sp. nov. is proposed. The type strain is DBTF-15 (=KACC 19431=NBRC 113039).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002677
2018-04-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1344.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002677&mimeType=html&fmt=ahah

References

  1. Yoon JH, Kang SJ, Lee SY, Oh KH, Oh TK. Seohaeicola saemankumensis gen. nov., sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2009;59:2675–2679 [CrossRef][PubMed]
    [Google Scholar]
  2. Yoon JH, Kang SJ, Jung YT, Oh TK. Gaetbulicola byunsanensis gen. nov., sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2010;60:196–199 [CrossRef][PubMed]
    [Google Scholar]
  3. Jung YT, Kim BH, Oh TK, Yoon JH. Pseudoruegeria lutimaris sp. nov., isolated from a tidal flat sediment, and emended description of the genus Pseudoruegeria. Int J Syst Evol Microbiol 2010;60:1177–1181 [CrossRef][PubMed]
    [Google Scholar]
  4. Park S, Park DS, Bae KS, Yoon JH. Phaeobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2014;64:1378–1383 [CrossRef][PubMed]
    [Google Scholar]
  5. Jung YT, Lee JS, Yoon JH. Maliponia aquimaris gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016;66:2271–2277 [CrossRef][PubMed]
    [Google Scholar]
  6. Park S, Yoon SY, Ha MJ, Jung YT, Yoon JH. Primorskyibacter aestuariivivens sp. nov., isolated from a tidal flat, and emended description of the genus Primorskyibacter. Int J Syst Evol Microbiol 2016;66:5550–5555 [CrossRef][PubMed]
    [Google Scholar]
  7. Choi DH, Cho JC, Lanoil BD, Giovannoni SJ, Cho BC. Maribius salinus gen. nov., sp. nov., isolated from a solar saltern and Maribius pelagius sp. nov., cultured from the Sargasso Sea, belonging to the Roseobacter clade. Int J Syst Evol Microbiol 2007;57:270–275 [CrossRef][PubMed]
    [Google Scholar]
  8. Lee SD. Maribius pontilimi sp. nov., isolated from a tidal mudflat. Int J Syst Evol Microbiol 2018;68:353–357 [CrossRef][PubMed]
    [Google Scholar]
  9. Martínez-Checa F, Quesada E, Martínez-Cánovas MJ, Llamas I, Béjar V. Palleronia marisminoris gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium belonging to the 'Alphaproteobacteria', isolated from a saline soil. Int J Syst Evol Microbiol 2005;55:2525–2530 [CrossRef][PubMed]
    [Google Scholar]
  10. Albuquerque L, França L, Taborda M, La Cono V, Yakimov M et al. Palleronia abyssalis sp. nov., isolated from the deep Mediterranean Sea and the emended description of the genus Palleronia and of the species Palleronia marisminoris. Antonie van Leeuwenhoek 2015;107:633–642 [CrossRef][PubMed]
    [Google Scholar]
  11. Albuquerque L, França L, Taborda M, Cono VL, Yakimov M et al. Palleronia abyssalis sp. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List no. 163. Int J Syst Evol Microbiol 2015;65:1105–1111[Crossref]
    [Google Scholar]
  12. Kim Y, Kim JH, Lee KC, Lee JS, Kim W. Palleronia soli sp. nov., isolated from a soil sample on reclaimed tidal land, and emended description of the genus Palleronia. Int J Syst Evol Microbiol 2015;65:2516–2521 [CrossRef][PubMed]
    [Google Scholar]
  13. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2969–2974 [CrossRef][PubMed]
    [Google Scholar]
  14. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  15. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993;[Crossref]
    [Google Scholar]
  16. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  17. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
    [Google Scholar]
  18. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996;46:502–505 [CrossRef]
    [Google Scholar]
  19. Yoon J-H, Lee ST, Kim S-B, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997;47:111–114 [CrossRef]
    [Google Scholar]
  20. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 2003;53:53–57 [CrossRef][PubMed]
    [Google Scholar]
  21. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[Crossref]
    [Google Scholar]
  22. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  23. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  24. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley and Sons; 1994; pp.121–161
    [Google Scholar]
  25. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  26. Park S, Park JM, Lee KC, Bae KS, Yoon JH. Boseongicola aestuarii gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2618–2624 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002677
Loading
/content/journal/ijsem/10.1099/ijsem.0.002677
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error