1887

Abstract

A Gram-stain-positive, flagellated, catalase- and cytochrome c oxidase-positive bacterial strain, designated S20-100, was isolated from alpine forest soil. Growth occurred at a temperature range of 0–30 °C, at pH 6–9 and in the presence of 0–1 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain S20-100 was related to the genus Marmoricola and had the highest 16S rRNA gene sequence similarity to Marmoricola ginsengisoli Gsoil 097 (98.4 %) and Marmoricola solisilvae KIS18-7 (98.3 %). The cell-wall peptidoglycan of strain S20-100 contained ll-diaminopimelic acid (ll-Dpm) as the diagnostic diamino acid and was of the type A3γ ll-Dpm – Gly. The strain contained MK-8(H4) as the predominant isoprenoid quinone and diphosphatidylglycerol, phosphatidylglycerol, four unidentified phospholipids and three unidentified lipids in lower amounts. The major cellular fatty acids (>10 %) were iso-C16 : 0, C17 : 1ω6c and C18 : 1ω9c. The genomic DNA G+C content was 66.2 mol%. Combined data of phylogenetic, phenotypic and chemotaxonomic analyses demonstrated that strain S20-100 represents a novel species of the genus Marmoricola , for which the name Marmoricola silvestris sp. nov. is proposed. The type strain is S20-100 (=DSM 104694=LMG 30008).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002674
2018-03-02
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1313.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002674&mimeType=html&fmt=ahah

References

  1. Urzì C, Salamone P, Schumann P, Stackebrandt E. Marmoricola aurantiacus gen. nov., sp. nov., a coccoid member of the family Nocardioidaceae isolated from a marble statue. Int J Syst Evol Microbiol 2000; 50: 529– 536 [CrossRef] [PubMed]
    [Google Scholar]
  2. Dastager SG, Lee JC, Ju YJ, Park DJ, Kim CJ. Marmoricola bigeumensis sp. nov., a member of the family Nocardioidaceae. Int J Syst Evol Microbiol 2008; 58: 1060– 1063 [CrossRef] [PubMed]
    [Google Scholar]
  3. Lee DW, Lee SD. Marmoricola scoriae sp. nov., isolated from volcanic ash. Int J Syst Evol Microbiol 2010; 60: 2135– 2139 [CrossRef] [PubMed]
    [Google Scholar]
  4. Kim SJ, Lim JM, Hamada M, Ahn JH, Weon HY et al. Marmoricola solisilvae sp. nov. and Marmoricola terrae sp. nov., isolated from soil and emended description of the genus Marmoricola. Int J Syst Evol Microbiol 2015; 65: 1825– 1830 [CrossRef] [PubMed]
    [Google Scholar]
  5. Evtushenko LI. Marmoricola. In: Bergey’s Manual of Systematics of Archaea and Bacteria Wiley Online Library; 2015; pp. 1– 27 doi:10.1002/9781118960608.gbm00158
    [Google Scholar]
  6. Lee SD. Marmoricola aequoreus sp. nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 2007; 57: 1391– 1395 [CrossRef] [PubMed]
    [Google Scholar]
  7. de Menezes CB, Tonin MF, Silva LJ, de Souza WR, Parma M et al. Marmoricola aquaticus sp. nov., an actinomycete isolated from a marine sponge. Int J Syst Evol Microbiol 2015; 65: 2286– 2291 [CrossRef] [PubMed]
    [Google Scholar]
  8. Lee HY, Liu Q, Kang MS, Kim SK, Lee SY et al. Marmoricola ginsengisoli sp. nov. and Marmoricola pocheonensis sp. nov. isolated from a ginseng-cultivating field. Int J Syst Evol Microbiol 2016; 66: 1996– 2001 [CrossRef] [PubMed]
    [Google Scholar]
  9. Lee SD, Lee DW, Ko YH. Marmoricola korecus sp. nov. Int J Syst Evol Microbiol 2011; 61: 1628– 1631 [CrossRef] [PubMed]
    [Google Scholar]
  10. Jiang ZK, Pan Z, Li FN, Li XJ, Liu SW et al. Marmoricola endophyticus sp. nov., an endophytic actinobacterium isolated from Thespesia populnea. Int J Syst Evol Microbiol 2017; 67: 4379– 4384 [CrossRef] [PubMed]
    [Google Scholar]
  11. França L, Sannino C, Turchetti B, Buzzini P, Margesin R. Seasonal and altitudinal changes of culturable bacterial and yeast diversity in Alpine forest soils. Extremophiles 2016; 20: 855– 873 [CrossRef] [PubMed]
    [Google Scholar]
  12. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49: 1– 7 [PubMed]
    [Google Scholar]
  13. Nielsen P, Fritze D, Priest FG. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 1995; 141: 1745– 1761 [CrossRef]
    [Google Scholar]
  14. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996; 46: 1088– 1092 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  21. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  22. Zhang DC, Schinner F, Margesin R. Pedobacter bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010; 60: 2592– 2595 [CrossRef] [PubMed]
    [Google Scholar]
  23. Margesin R, Gander S, Zacke G, Gounot AM, Schinner F. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 2003; 7: 451– 458 [CrossRef] [PubMed]
    [Google Scholar]
  24. Schumann P. Peptidoglycan structure. Methods Microbiolvol. 38 2011; pp. 101– 129
    [Google Scholar]
  25. Stead DE, Sellwood JE, Wilson J, Viney I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 1992; 72: 315– 321 [CrossRef]
    [Google Scholar]
  26. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  27. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46: 234– 239 [CrossRef] [PubMed]
    [Google Scholar]
  28. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  29. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  30. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81: 461– 466 [CrossRef] [PubMed]
    [Google Scholar]
  31. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  32. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  33. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  34. Huss VAR, Festl H, Schleifer KH. Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
    [Google Scholar]
  35. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  36. Margesin R, Schinner F, Marx JC, Gerday C. (editors) Psychrophiles: from Biodiversity to Biotechnology Berlin: Springer; 2008; [Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002674
Loading
/content/journal/ijsem/10.1099/ijsem.0.002674
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error