1887

Abstract

A bacterial strain designated KMB9 was isolated from a freshwater pond in Taiwan and characterized using a polyphasic taxonomy approach. Cells of strain KMB9 were Gram-stain-negative, aerobic, poly-β-hydroxybutyrate-accumulating, motile by means of a monopolar flagellum, non-spore-forming and rods surrounded by a thick capsule and forming white-coloured colonies. Growth occurred at 20–40 °C (optimum, 25–37 °C), at pH 6.5–7.5 (optimum, pH 7.0) and with 0–0.5 % NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene and four housekeeping gene sequences (, , and ) showed that strain KMB9 forms a distinct phyletic line within the family , and the levels of 16S rRNA gene sequence similarity to its closest relatives with validly published names were less than 93.3 %. The predominant fatty acids were summed feature 3 (comprising Cω7 and/or Cω6), C and Cω7. The major isoprenoid quinone was Q-8. The major polyamine was putrescine. The polar lipid profile revealed the presence of phosphatidylethanolamine, phosphatidylglycerol and several uncharacterized aminophospholipids, aminolipids, phospholipids and lipids. The genomic DNA G+C content of strain KMB9 was 54.5 mol%. On the basis of the genotypic and phenotypic data, strain KMB9 represents a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain is KMB9 (=BCRC 81053=LMG 30055=KCTC 52814).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002667
2018-04-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1291.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002667&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T, Order I. Burkholderiales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005 pp. 575–763 [Crossref]
    [Google Scholar]
  2. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  3. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997; 47:249–251 [View Article][PubMed]
    [Google Scholar]
  4. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001; 51:1729–1735 [View Article][PubMed]
    [Google Scholar]
  5. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  6. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009; 37:D141–D145 [View Article][PubMed]
    [Google Scholar]
  7. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  8. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  9. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  10. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [Crossref]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  13. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  14. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article][PubMed]
    [Google Scholar]
  15. Felsenstein J. PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA 1993
  16. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C et al. Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 2014; 37:208–215 [View Article][PubMed]
    [Google Scholar]
  17. Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S et al. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 2005; 71:5107–5115 [View Article][PubMed]
    [Google Scholar]
  18. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 19–33
    [Google Scholar]
  19. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758[PubMed]
    [Google Scholar]
  20. Schlegel HG, Lafferty R, Krauss I. The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol 1970; 71:283–294 [View Article][PubMed]
    [Google Scholar]
  21. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 1999; 171:73–80 [View Article][PubMed]
    [Google Scholar]
  22. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 309–329
    [Google Scholar]
  23. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparativesystematic. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  24. Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35:213–219 [View Article][PubMed]
    [Google Scholar]
  25. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  26. Chang SC, Wang JT, Vandamme P, Hwang JH, Chang PS et al. Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 2004; 27:43–49 [View Article][PubMed]
    [Google Scholar]
  27. Nokhal T-H, Schlegel HG. Taxonomic Study of Paracoccus denitrificans . Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 121–161
    [Google Scholar]
  30. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  31. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47:698–708 [View Article]
    [Google Scholar]
  32. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 265–309
    [Google Scholar]
  33. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  34. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998; 19:554–568 [View Article][PubMed]
    [Google Scholar]
  35. Baldani JI, Baldani VLD, Seldin L, Dobereiner J. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 1986; 36:86–93 [View Article]
    [Google Scholar]
  36. Baldani JI, Pot B, Kirchhof G, Falsen E, Baldani VL et al. Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a milk plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Int J Syst Bacteriol 1996; 46:802–810 [View Article][PubMed]
    [Google Scholar]
  37. Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM et al. Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 2001; 51:157–168 [View Article][PubMed]
    [Google Scholar]
  38. Valverde A, Velázquez E, Gutiérrez C, Cervantes E, Ventosa A et al. Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris . Int J Syst Evol Microbiol 2003; 53:1979–1983 [View Article][PubMed]
    [Google Scholar]
  39. Ding L, Yokota A. Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int J Syst Evol Microbiol 2004; 54:2223–2230 [View Article][PubMed]
    [Google Scholar]
  40. Im WT, Bae HS, Yokota A, Lee ST. Herbaspirillum chlorophenolicum sp. nov., a 4-chlorophenol-degrading bacterium. Int J Syst Evol Microbiol 2004; 54:851–855 [View Article][PubMed]
    [Google Scholar]
  41. Rothballer M, Schmid M, Klein I, Gattinger A, Grundmann S et al. Herbaspirillum hiltneri sp. nov., isolated from surface-sterilized wheat roots. Int J Syst Evol Microbiol 2006; 56:1341–1348 [View Article][PubMed]
    [Google Scholar]
  42. Jung SY, Lee MH, Oh TK, Yoon JH. Herbaspirillum rhizosphaerae sp. nov., isolated from rhizosphere soil of Allium victorialis var. platyphyllum . Int J Syst Evol Microbiol 2007; 57:2284–2288 [View Article][PubMed]
    [Google Scholar]
  43. Dobritsa AP, Reddy MC, Samadpour M. Reclassification of Herbaspirillum putei as a later heterotypic synonym of Herbaspirillum huttiense, with the description of H. huttiense subsp. huttiense subsp. nov. and H. huttiense subsp. putei subsp. nov., comb. nov., and description of Herbaspirillum aquaticum sp. nov. Int J Syst Evol Microbiol 2010; 60:1418–1426 [View Article][PubMed]
    [Google Scholar]
  44. Carro L, Rivas R, León-Barrios M, González-Tirante M, Velázquez E et al. Herbaspirillum canariense sp. nov., Herbaspirillum aurantiacum sp. nov. and Herbaspirillum soli sp. nov., isolated from volcanic mountain soil, and emended description of the genus Herbaspirillum . Int J Syst Evol Microbiol 2012; 62:1300–1306 [View Article][PubMed]
    [Google Scholar]
  45. Lagier J-C, Gimenez G, Robert C, Raoult D, Fournier P-E. Non-contiguous finished genome sequence and description of Herbaspirillum massiliense sp. nov. Stand Genomic Sci 2012; 7:1–14 [View Article]
    [Google Scholar]
  46. Bajerski F, Ganzert L, Mangelsdorf K, Lipski A, Busse HJ et al. Herbaspirillum psychrotolerans sp. nov., a member of the family Oxalobacteraceae from a glacier forefield. Int J Syst Evol Microbiol 2013; 63:3197–3203 [View Article][PubMed]
    [Google Scholar]
  47. Lin SY, Hameed A, Arun AB, Liu YC, Hsu YH et al. Description of Noviherbaspirillum malthae gen. nov., sp. nov., isolated from an oil-contaminated soil, and proposal to reclassify Herbaspirillum soli, Herbaspirillum aurantiacum, Herbaspirillum canariense and Herbaspirillum psychrotolerans as Noviherbaspirillum soli comb. nov., Noviherbaspirillum aurantiacum comb. nov., Noviherbaspirillum canariense comb. nov. and Noviherbaspirillum psychrotolerans comb. nov. based on polyphasic analysis. Int J Syst Evol Microbiol 2013; 63:4100–4107 [View Article][PubMed]
    [Google Scholar]
  48. Kim SJ, Moon JY, Weon HY, Hong SB, Seok SJ et al. Noviherbaspirillum suwonense sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2014; 64:1552–1558 [View Article][PubMed]
    [Google Scholar]
  49. Chaudhary DK, Kim J. Noviherbaspirillum agri sp. nov., isolated from reclaimed grassland soil, and reclassification of Herbaspirillum massiliense (Lagier et al., 2014) as Noviherbaspirillum massiliense comb. nov. Int J Syst Evol Microbiol 2017; 67:1508–1515 [View Article][PubMed]
    [Google Scholar]
  50. Zhang DC, Redzic M, Schinner F, Margesin R. Glaciimonas immobilis gen. nov., sp. nov., a member of the family Oxalobacteraceae isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 2011; 61:2186–2190 [View Article][PubMed]
    [Google Scholar]
  51. Chung AP, Tiago I, Nobre MF, Veríssimo A, Morais PV et al. Glaciimonas singularis sp. nov., isolated from a uranium mine wastewater treatment plant. Int J Syst Evol Microbiol 2013; 63:2344–2350 [View Article][PubMed]
    [Google Scholar]
  52. Frasson D, Udovičić M, Frey B, Lapanje A, Zhang DC et al. Glaciimonas alpina sp. nov. isolated from alpine glaciers and reclassification of Glaciimonas immobilis Cr9-12 as the type strain of Glaciimonas alpina sp. nov. Int J Syst Evol Microbiol 2015; 65:1779–1785 [View Article][PubMed]
    [Google Scholar]
  53. Margesin R, Zhang DC, Frasson D, Brouchkov A. Glaciimonas frigoris sp. nov., a psychrophilic bacterium isolated from ancient Siberian permafrost sediment, and emended description of the genusGlaciimonas . Int J Syst Evol Microbiol 2016; 66:744–748 [View Article][PubMed]
    [Google Scholar]
  54. Tamer AU, Aragno M, Sahin N. Isolation and characterization of a new type of aerobic, oxalic acid utilizing bacteria, and proposal of Oxalicibacterium flavum gen. nov., sp. nov. Syst Appl Microbiol 2002; 25:513–519 [View Article][PubMed]
    [Google Scholar]
  55. Sahin N, Portillo MC, Kato Y, Schumann P. Description of Oxalicibacterium horti sp. nov. and Oxalicibacterium faecigallinarum sp. nov., new aerobic, yellow-pigmented, oxalotrophic bacteria. FEMS Microbiol Lett 2009; 296:198–202 [View Article][PubMed]
    [Google Scholar]
  56. Sahin N, Gonzalez JM, Iizuka T, Hill JE. Characterization of two aerobic ultramicrobacteria isolated from urban soil and a description of Oxalicibacterium solurbis sp. nov. FEMS Microbiol Lett 2010; 307:25–29 [View Article][PubMed]
    [Google Scholar]
  57. Makkar NS, Casida LE. Cupriavidus necator gen. nov., sp. nov.; a nonobligate bacterial predator of bacteria in soil. Int J Syst Bacteriol 1987; 37:323–326 [View Article]
    [Google Scholar]
  58. Coenye T, Falsen E, Vancanneyt M, Hoste B, Govan JR et al. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 1999; 49:405–413 [View Article][PubMed]
    [Google Scholar]
  59. Coenye T, Vandamme P, Lipuma JJ. Ralstonia respiraculi sp. nov., isolated from the respiratory tract of cystic fibrosis patients. Int J Syst Evol Microbiol 2003; 53:1339–1342 [View Article][PubMed]
    [Google Scholar]
  60. Vandamme P, Goris J, Coenye T, Hoste B, Janssens D et al. Assignment of Centers for Disease Control group IVc-2 to the genus Ralstonia as Ralstonia paucula sp. nov. Int J Syst Bacteriol 1999; 49:663–669 [View Article][PubMed]
    [Google Scholar]
  61. Sahin N, Işik K, Tamer AU, Goodfellow M. Taxonomic position of "Pseudomonas oxalaticus" strain Ox1T (DSM 1105T) (Khambata and Bhat, 1953) and its description in the genus Ralstonia as Ralstonia oxalatica comb. nov. Syst Appl Microbiol 2000; 23:206–209 [View Article][PubMed]
    [Google Scholar]
  62. Goris J, de Vos P, Coenye T, Hoste B, Janssens D et al. Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 2001; 51:1773–1782 [View Article][PubMed]
    [Google Scholar]
  63. Vaneechoutte M, Kämpfer P, de Baere T, Falsen E, Verschraegen G. Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol 2004; 54:317–327 [View Article][PubMed]
    [Google Scholar]
  64. Kageyama C, Ohta T, Hiraoka K, Suzuki M, Okamoto T et al. Chlorinated aliphatic hydrocarbon-induced degradation of trichloroethylene in Wautersia numadzuensis sp. nov. Arch Microbiol 2005; 183:56–65 [View Article][PubMed]
    [Google Scholar]
  65. Sato Y, Nishihara H, Yoshida M, Watanabe M, Rondal JD et al. Cupriavidus pinatubonensis sp. nov. and Cupriavidus laharis sp. nov., novel hydrogen-oxidizing, facultatively chemolithotrophic bacteria isolated from volcanic mudflow deposits from Mt. Pinatubo in the Philippines. Int J Syst Evol Microbiol 2006; 56:973–978 [View Article][PubMed]
    [Google Scholar]
  66. Cuadrado V, Gomila M, Merini L, Giulietti AM, Moore ER. Cupriavidus pampae sp. nov., a novel herbicide-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2010; 60:2606–2612 [View Article][PubMed]
    [Google Scholar]
  67. Estrada-de Los Santos P, Martínez-Aguilar L, López-Lara IM, Caballero-Mellado J. Cupriavidus alkaliphilus sp. nov., a new species associated with agricultural plants that grow in alkaline soils. Syst Appl Microbiol 2012; 35:310–314 [View Article][PubMed]
    [Google Scholar]
  68. Estrada-de Los Santos P, Solano-Rodríguez R, Matsumura-Paz LT, Vásquez-Murrieta MS, Martínez-Aguilar L. Cupriavidus plantarum sp. nov., a plant-associated species. Arch Microbiol 2014; 196:811–817 [View Article][PubMed]
    [Google Scholar]
  69. Singh P, Kim YJ, Nguyen NL, Hoang VA, Sukweenadhi J et al. Cupriavidus yeoncheonense sp. nov., isolated from soil of ginseng. Antonie van Leeuwenhoek 2015; 107:749–758 [View Article][PubMed]
    [Google Scholar]
  70. Sun LN, Wang DS, Yang ED, Fang LC, Chen YF et al. Cupriavidus nantongensis sp. nov., a novel chlorpyrifos-degrading bacterium isolated from sludge. Int J Syst Evol Microbiol 2016; 66:2335–2341 [View Article][PubMed]
    [Google Scholar]
  71. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol Immunol 1995; 39:897–904[PubMed] [Crossref]
    [Google Scholar]
  72. de Baere T, Steyaert S, Wauters G, des Vos P, Goris J et al. Classification of Ralstonia pickettii biovar 3/'thomasii' strains (Pickett 1994) and of new isolates related to nosocomial recurrent meningitis as Ralstonia mannitolytica sp. nov. Int J Syst Evol Microbiol 2001; 51:547–558 [View Article][PubMed]
    [Google Scholar]
  73. Coenye T, Goris J, de Vos P, Vandamme P, Lipuma JJ. Classification of Ralstonia pickettii-like isolates from the environment and clinical samples as Ralstonia insidiosa sp. nov. Int J Syst Evol Microbiol 2003; 53:1075–1080 [View Article][PubMed]
    [Google Scholar]
  74. Safni I, Cleenwerck I, de Vos P, Fegan M, Sly L et al. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int J Syst Evol Microbiol 2014; 64:3087–3103 [View Article][PubMed]
    [Google Scholar]
  75. Coenye T, Falsen E, Hoste B, Ohlén M, Goris J et al. Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov. Int J Syst Evol Microbiol 2000; 50:887–899 [View Article][PubMed]
    [Google Scholar]
  76. Anandham R, Indiragandhi P, Kwon SW, Sa TM, Jeon CO et al. Pandoraea thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soils of sesame (Sesamum indicum L.). Int J Syst Evol Microbiol 2010; 60:21–26 [View Article][PubMed]
    [Google Scholar]
  77. Sahin N, Tani A, Kotan R, Sedlácek I, Kimbara K et al. Pandoraea oxalativorans sp. nov., Pandoraea faecigallinarum sp. nov. and Pandoraea vervacti sp. nov., isolated from oxalate-enriched culture. Int J Syst Evol Microbiol 2011; 61:2247–2253 [View Article][PubMed]
    [Google Scholar]
  78. Jeong SE, Lee HJ, Jia B, Jeon CO. Pandoraea terrae sp. nov., isolated from forest soil, and emended description of the genus Pandoraea Coenye et al. 2000. Int J Syst Evol Microbiol 2016; 66:3524–3530 [View Article][PubMed]
    [Google Scholar]
  79. França L, Albuquerque L, Sánchez C, Fareleira P, da Costa MS. Ampullimonas aquatilisgen. nov., sp. nov. isolated from bottled mineral water. Int J Syst Evol Microbiol 2016; 66:1459–1465 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.002667
Loading
/content/journal/ijsem/10.1099/ijsem.0.002667
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error