1887

Abstract

A Gram-stain-negative, facultatively aerobic, aromatic hydrocarbon-degrading bacterium, designated strain BN5, was isolated from gasoline-contaminated soil. Cells were motile and slightly curved rods with a single flagellum showing catalase and oxidase activities. Growth was observed at 20–37 °C (optimum, 25–30 °C), pH 3–7 (optimum, pH 5–6) and 0–2 % NaCl (optimum, 0 %). Ubiquinone-8 was the predominant respiratory quinone. The major fatty acids were C16 : 0, cyclo-C19 : 0 ω8c and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c). Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phosphoamino lipid, three unidentified amino lipids and eight unidentified lipids were the identified polar lipids. The DNA G+C content was 62.93 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BN5 formed a phylogenic lineage with members of the genus Paraburkholderia and showed the highest 16S rRNA gene sequence similarities to Paraburkholderia phytofirmans PsJN (99.4 %), Paraburkholderia dipogonis DL7 (98.8 %) and Paraburkholderia insulsa PNG-April (98.8 %). The average nucleotide identity and in silico DNA–DNA hybridization (DDH) values between strain BN5 and P. phytofirmans PsJN were 88.5 and 36.5 %, respectively. The DDH values for strain BN5 with P. dipogonis LMG 28415 and P. insulsa DSM 28142 were 41.0±4.9 % (reciprocal, 33.0±4.3 %) and 47.1±6.6 % (reciprocal, 51.7±5.4 %), respectively. Based on its physiological, chemotaxonomic and phylogenetic features, we conclude that strain BN5 is a novel species of the genus Paraburkholderia , for which the name Paraburkholderia aromaticivorans sp. nov. is proposed. The type strain is BN5 (=KACC 19419=JCM 32303).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002661
2018-02-20
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1251.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002661&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 1992; 36: 1251– 1275 [CrossRef] [PubMed]
    [Google Scholar]
  2. Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M. Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 1973; 23: 333– 339 [CrossRef]
    [Google Scholar]
  3. Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 2014; 5: 429 [CrossRef] [PubMed]
    [Google Scholar]
  4. Dobritsa AP, Samadpour M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 2016; 66: 2836– 2846 [CrossRef] [PubMed]
    [Google Scholar]
  5. Gao Z, Yuan Y, Xu L, Liu R, Chen M et al. Paraburkholderia caffeinilytica sp. nov., isolated from the soil of a tea plantation. Int J Syst Evol Microbiol 2016; 66: 4185– 4190 [CrossRef] [PubMed]
    [Google Scholar]
  6. Draghi WO, Peeters C, Cnockaert M, Snauwaert C, Wall LG et al. Burkholderia cordobensis sp. nov., from agricultural soils. Int J Syst Evol Microbiol 2014; 64: 2003– 2008 [CrossRef] [PubMed]
    [Google Scholar]
  7. Farh MA, Kim YJ, van An H, Sukweenadhi J, Singh P et al. Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil. Arch Microbiol 2015; 197: 439– 447 [CrossRef] [PubMed]
    [Google Scholar]
  8. Baek I, Seo B, Lee I, Lee K, Park SC et al. Burkholderia megalochromosomata sp. nov., isolated from grassland soil. Int J Syst Evol Microbiol 2015; 65: 959– 964 [CrossRef] [PubMed]
    [Google Scholar]
  9. Baek I, Seo B, Lee I, Yi H, Chun J. Burkholderia monticola sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2015; 65: 504– 509 [CrossRef] [PubMed]
    [Google Scholar]
  10. Lee JC, Whang KS. Burkholderia humisilvae sp. nov., Burkholderia solisilvae sp. nov. and Burkholderia rhizosphaerae sp. nov., isolated from forest soil and rhizosphere soil. Int J Syst Evol Microbiol 2015; 65: 2986– 2992 [CrossRef] [PubMed]
    [Google Scholar]
  11. Vandamme P, de Brandt E, Houf K, Salles JF, Dirk van Elsas J et al. Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosphere soil. Int J Syst Evol Microbiol 2013; 63: 4707– 4718 [CrossRef] [PubMed]
    [Google Scholar]
  12. Viallard V, Poirier I, Cournoyer B, Haurat J, Wiebkin S et al. Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int J Syst Bacteriol 1998; 48: 549– 563 [CrossRef] [PubMed]
    [Google Scholar]
  13. Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA et al. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 2005; 55: 1187– 1192 [CrossRef] [PubMed]
    [Google Scholar]
  14. Sheu SY, Chen MH, Liu WY, Andrews M, James EK et al. Burkholderia dipogonis sp. nov., isolated from root nodules of Dipogon lignosus in New Zealand and Western Australia. Int J Syst Evol Microbiol 2015; 65: 4716– 4723 [CrossRef] [PubMed]
    [Google Scholar]
  15. Bournaud C, Moulin L, Cnockaert M, Faria S, Prin Y et al. Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol 2017; 67: 432– 440 [CrossRef] [PubMed]
    [Google Scholar]
  16. Steenkamp ET, van Zyl E, Beukes CW, Avontuur JR, Chan WY et al. Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa. Syst Appl Microbiol 2015; 38: 545– 554 [CrossRef] [PubMed]
    [Google Scholar]
  17. Rusch A, Islam S, Savalia P, Amend JP. Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system. Int J Syst Evol Microbiol 2015; 65: 189– 194 [CrossRef] [PubMed]
    [Google Scholar]
  18. Liu XY, Li CX, Luo XJ, Lai QL, Xu JH. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil. Int J Syst Evol Microbiol 2014; 64: 3247– 3253 [CrossRef] [PubMed]
    [Google Scholar]
  19. Guo JK, Ding YZ, Feng RW, Wang RG, Xu YM et al. Burkholderia metalliresistens sp. nov., a multiple metal-resistant and phosphate-solubilising species isolated from heavy metal-polluted soil in Southeast China. Antonie van Leeuwenhoek 2015; 107: 1591– 1598 [CrossRef] [PubMed]
    [Google Scholar]
  20. Lu P, Zheng LQ, Sun JJ, Liu HM, Li SP et al. Burkholderia zhejiangensis sp. nov., a methyl-parathion-degrading bacterium isolated from a wastewater-treatment system. Int J Syst Evol Microbiol 2012; 62: 1337– 1341 [CrossRef] [PubMed]
    [Google Scholar]
  21. Gu JY, Zang SG, Sheng XF, He LY, Huang Z et al. Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface. Int J Syst Evol Microbiol 2015; 65: 1031– 1037 [CrossRef] [PubMed]
    [Google Scholar]
  22. Lee Y, Jeon CO. Sphingomonas frigidaeris sp. nov., isolated from an air conditioning system. Int J Syst Evol Microbiol 2017; 67: 3907– 3912 [CrossRef] [PubMed]
    [Google Scholar]
  23. Jeong HI, Jin HM, Jeon CO. Confluentimicrobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from sea-tidal-flat sediment, and emended description of the genus Confluentimicrobium Park et al. 2015. Int J Syst Evol Microbiol 2015; 65: 4191– 4195 [CrossRef] [PubMed]
    [Google Scholar]
  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  25. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3: e56 [CrossRef] [PubMed]
    [Google Scholar]
  26. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.6a Seattle: Department of genetics, University of Washington, Seattle, WA, USA; 2002
    [Google Scholar]
  27. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312– 1313 [CrossRef] [PubMed]
    [Google Scholar]
  28. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  30. Chang HW, Nam YD, Jung MY, Kim KH, Roh SW et al. Statistical superiority of genome-probing microarrays as genomic DNA-DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J Microbiol Methods 2008; 75: 523– 530 [CrossRef] [PubMed]
    [Google Scholar]
  31. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52: 1043– 1047 [CrossRef] [PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  33. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33: 152– 155
    [Google Scholar]
  34. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  35. Stanier RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 1966; 43: 159– 271 [CrossRef] [PubMed]
    [Google Scholar]
  36. Jin HM, Kim JM, Lee HJ, Madsen EL, Jeon CO. Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Environ Sci Technol 2012; 46: 7731– 7740 [CrossRef] [PubMed]
    [Google Scholar]
  37. Jin HM, Choi EJ, Jeon CO. Isolation of a BTEX-degrading bacterium, Janibacter sp. SB2, from a sea-tidal flat and optimization of biodegradation conditions. Bioresour Technol 2013; 145: 57– 64 [CrossRef] [PubMed]
    [Google Scholar]
  38. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988; 19: 1– 67 [Crossref]
    [Google Scholar]
  39. Jeon CO, Park W, Ghiorse WC, Madsen EL. Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 2004; 54: 93– 97 [CrossRef] [PubMed]
    [Google Scholar]
  40. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  41. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19: 161– 208 [Crossref]
    [Google Scholar]
  42. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.; 1990
    [Google Scholar]
  43. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27: 104– 117 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002661
Loading
/content/journal/ijsem/10.1099/ijsem.0.002661
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error