1887

Abstract

A Gram-stain-negative, aerobic, short rod-shaped bacterium with a single polar flagellum, designated strain S27-2, was isolated from surface seawater from the Indian Ocean. Growth was observed in 0–12.0 % (w/v) NaCl with an optimum of 0.5–2.0 % (w/v) NaCl, pH 6.0–9.0 with an optimum of pH 7.0, and growth temperature of 10–41 °C with an optimum of 25–37 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S27-2 belonged to the family and formed a distinct lineage with the type strain of . Levels of 16S rRNA gene sequence similarity between strain S27-2 and members of related genera included in the trees ranged from 86.7 to 93.8 %. Strain S27-2 contained Q-8 as the predominant ubiquinone. The principal fatty acids (>10 %) were C (22.1 %), Cω7ω6 (22.7 %) and Cω7ω6 (20.1 %). The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified phospholipid and two unknown lipids. The G+C content of strain S27-2 was 43.7 mol%. On the basis of the polyphasic taxonomic evidence presented in this study, strain S27-2 should be classified as a novel species in a new genus within the family , for which the name gen. nov., sp. nov. is proposed, with the type strain S27-2 (= KCTC52335=MCCC 1A02149).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002660
2018-05-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1423.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002660&mimeType=html&fmt=ahah

References

  1. Ivanova EP, Mikhaĭlov VV. A new family, Alteromonadaceae fam. nov., including marine proteobacteria of the genera Alteromonas, Pseudoalteromonas, Idiomarina, and Colwellia. Microbiology 2001;70:10–17 [CrossRef][PubMed]
    [Google Scholar]
  2. Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 2005;55:1181–1186 [CrossRef][PubMed]
    [Google Scholar]
  3. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  4. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  7. Lai Q, Yuan J, Wang B, Sun F, Qiao N et al. Bowmanella pacifica sp. nov., isolated from a pyrene-degrading consortium. Int J Syst Evol Microbiol 2009;59:1579–1582 [CrossRef][PubMed]
    [Google Scholar]
  8. Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 1989;479:297–306 [CrossRef][PubMed]
    [Google Scholar]
  9. Du J, Dong C, Lai Q, Liu Y, Xie Y et al. Pseudobowmanella zhangzhouensis gen. nov., sp. nov., isolated from the surface freshwater of the Jiulong River in China. Antonie van Leeuwenhoek 2015;107:741–748 [CrossRef][PubMed]
    [Google Scholar]
  10. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  11. Collins M. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series No. 20) London: Academic Press; 1985; pp267–287
    [Google Scholar]
  12. Kates M. Techniques of Lipidology, 2nd ed. Amsterdam: Elsevier; 1986; pp.106–107 241–246
    [Google Scholar]
  13. Du J, Dong C, Lai Q, Liu Y, Xie Y et al. Pseudobowmanella zhangzhouensis gen. nov., sp. nov., isolated from the surface freshwater of the Jiulong River in China. Antonie van Leeuwenhoek 2015;107:741–748 [CrossRef][PubMed]
    [Google Scholar]
  14. Jean WD, Chen JS, Lin YT, Shieh WY. Bowmanella denitrificans gen. nov., sp. nov., a denitrifying bacterium isolated from seawater from An-Ping Harbour, Taiwan. Int J Syst Evol Microbiol 2006;56:2463–2467 [CrossRef][PubMed]
    [Google Scholar]
  15. Yi H, Bae KS, Chun J. Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii. Int J Syst Evol Microbiol 2004;54:571–576 [CrossRef][PubMed]
    [Google Scholar]
  16. Wang Y, Wang H, Liu J, Lai Q, Shao Z et al. Aestuariibacter aggregatus sp. nov., a moderately halophilic bacterium isolated from seawater of the Yellow Sea. FEMS Microbiol Lett 2010;309:48–54 [CrossRef][PubMed]
    [Google Scholar]
  17. Tanaka N, Romanenko LA, Frolova GM, Mikhailov VV. Aestuariibacter litoralis sp. nov., isolated from a sandy sediment of the Sea of Japan. Int J Syst Evol Microbiol 2010;60:317–320 [CrossRef][PubMed]
    [Google Scholar]
  18. Teramoto M, Nishijima M. Agaribacter marinus gen. nov., sp. nov., an agar-degrading bacterium from surface seawater. Int J Syst Evol Microbiol 2014;64:2416–2423 [CrossRef][PubMed]
    [Google Scholar]
  19. Gupta V, Sharma G, Srinivas TN, Anil Kumar P. Aliiglaciecola coringensis sp. nov., isolated from a water sample collected from mangrove forest in Coringa, Andhra Pradesh, India. Antonie van Leeuwenhoek 2014;106:1097–1103 [CrossRef][PubMed]
    [Google Scholar]
  20. Jean WD, Hsu CY, Huang SP, Chen JS, Lin S et al. Reclassification of [Glaciecola] lipolytica and [Aestuariibacter] litoralis in Aliiglaciecola gen. nov., as Aliiglaciecola lipolytica comb. nov. and Aliiglaciecola litoralis comb. nov., respectively. Int J Syst Evol Microbiol 2013;63:2859–2864 [CrossRef][PubMed]
    [Google Scholar]
  21. Jin HM, Jeong HI, Jeon CO. Aliiglaciecola aliphaticivorans sp. nov., an aliphatic hydrocarbon-degrading bacterium, isolated from a sea-tidal flat and emended description of the genus Aliiglaciecola Jean et al. 2013. Int J Syst Evol Microbiol 2015;65:1550–1555 [CrossRef][PubMed]
    [Google Scholar]
  22. Yoon JH, Yeo SH, Oh TK, Park YH. Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004;54:1197–1201 [CrossRef][PubMed]
    [Google Scholar]
  23. Chiu HH, Shieh WY, Lin SY, Tseng CM, Chiang PW et al. Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Syst Evol Microbiol 2007;57:1209–1216 [CrossRef][PubMed]
    [Google Scholar]
  24. Chen YG, Xiao HD, Tang SK, Zhang YQ, Borrathybay E et al. Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie van Leeuwenhoek 2009;96:259–266 [CrossRef][PubMed]
    [Google Scholar]
  25. Park S, Choi SJ, Park JM, Yoon JH. Alteromonas aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017;67:2791–2797 [CrossRef][PubMed]
    [Google Scholar]
  26. Shi XL, Wu YH, Jin XB, Wang CS, Xu XW. Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrate-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2017;67:237–242 [CrossRef][PubMed]
    [Google Scholar]
  27. Sinha RK, Krishnan KP, Singh A, Thomas FA, Jain A et al. Alteromonas pelagimontana sp. nov., a marine exopolysaccharide-producing bacterium isolated from the Southwest Indian Ridge. Int J Syst Evol Microbiol 2017;67:4032–4038 [CrossRef][PubMed]
    [Google Scholar]
  28. Baik KS, Park YD, Seong CN, Kim EM, Bae KS et al. Glaciecola nitratireducens sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2006;56:2185–2188 [CrossRef][PubMed]
    [Google Scholar]
  29. Yong JJ, Park SJ, Kim HJ, Rhee SK. Glaciecola agarilytica sp. nov., an agar-digesting marine bacterium from the East Sea, Korea. Int J Syst Evol Microbiol 2007;57:951–953 [CrossRef][PubMed]
    [Google Scholar]
  30. Chen LP, Xu HY, Fu SZ, Fan HX, Liu YH et al. Glaciecola lipolytica sp. nov., isolated from seawater near Tianjin city, China. Int J Syst Evol Microbiol 2009;59:73–76 [CrossRef][PubMed]
    [Google Scholar]
  31. Zhang YJ, Zhang XY, Mi ZH, Chen CX, Gao ZM et al. Glaciecola arctica sp. nov., isolated from Arctic marine sediment. Int J Syst Evol Microbiol 2011;61:2338–2341 [CrossRef][PubMed]
    [Google Scholar]
  32. Shivaji S, Reddy GS. Phylogenetic analyses of the genus Glaciecola: emended description of the genus Glaciecola, transfer of Glaciecola mesophila, G. agarilytica, G. aquimarina, G. arctica, G. chathamensis, G. polaris and G. psychrophila to the genus Paraglaciecola gen. nov. as Paraglaciecola mesophila comb. nov., P. agarilytica comb. nov., P. aquimarina comb. nov., P. arctica comb. nov., P. chathamensis comb. nov., P. polaris comb. nov. and P. psychrophila comb. nov., and description of Paraglaciecola oceanifecundans sp. nov., isolated from the Southern Ocean. Int J Syst Evol Microbiol 2014;64:3264–3275 [CrossRef][PubMed]
    [Google Scholar]
  33. Bech PK, Schultz-Johansen M, Glaring MA, Barbeyron T, Czjzek M et al. Paraglaciecola hydrolytica sp. nov., a bacterium with hydrolytic activity against multiple seaweed-derived polysaccharides. Int J Syst Evol Microbiol 2017;67:2242–2247 [CrossRef][PubMed]
    [Google Scholar]
  34. Jeon CO, Lim JM, Park DJ, Kim CJ. Salinimonas chungwhensis gen. nov., sp. nov., a moderately halophilic bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 2005;55:239–243 [CrossRef][PubMed]
    [Google Scholar]
  35. Yoon JH, Kang SJ, Lee SY. Salinimonas lutimaris sp. nov., a polysaccharide-degrading bacterium isolated from a tidal flat. Antonie van Leeuwenhoek 2012;101:803–810 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002660
Loading
/content/journal/ijsem/10.1099/ijsem.0.002660
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error