1887

Abstract

A bright-red bacterial strain, TAPP3, was isolated from a freshwater sample taken from the Wanan Creek in Taiwan. Phylogenetic analyses based on 16S rRNA gene sequences revealed that TAPP3 represented a member of the genus and showed the highest levels of sequence similarity to DCY57 (97.0 %) and KJ035 (96.5 %) and less than 96.2 % with other members of the genus. Cells of TAPP3 were Gram-stain-negative, aerobic, motile by gliding, rods that were surrounded by a thick capsule. Growth occurred at 20–35 °C (optimum, 25–30 °C), at pH 6.5–7.5 (optimum, pH 7) and with 0–1 % NaCl (optimum, 0 %). TAPP3 contained iso-C, summed feature 3 (Cω7 and/or Cω6) and Cω5 as the predominant fatty acids. The major isoprenoid quinone was MK-7. The polar lipid profile consisted of phosphatidylethanolamine, six uncharacterized aminophospholipids and four uncharacterized lipids. The major polyamine was homospermidine. The DNA G+C content of the genomic DNA was 62.8 mol%. The DNA–DNA relatedness of TAPP3 with respect to DCY57 was less than 40 %. On the basis of the phylogenetic inference and phenotypic data, TAPP3 should be classified as representing a novel species, for which the name sp. nov. is proposed. The type strain is TAPP3 (=BCRC 80979=LMG 29559=KCTC 52236).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002657
2018-04-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1220.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002657&mimeType=html&fmt=ahah

References

  1. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21:374–383 [View Article]
    [Google Scholar]
  2. Buczolits S, Denner EB, Kämpfer P, Busse HJ. Proposal of Hymenobacter norwichensis sp. nov., classification of 'Taxeobacter ocellatus', 'Taxeobacter gelupurpurascens' and 'Taxeobacter chitinovorans' as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 2006; 56:2071–2078 [View Article][PubMed]
    [Google Scholar]
  3. Han L, Wu SJ, Qin CY, Zhu YH, Lu ZQ et al. Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. Antonie van Leeuwenhoek 2014; 105:971–978 [View Article][PubMed]
    [Google Scholar]
  4. Ludwig W, Euzéby J, Whitman WB. Taxonomic outlines of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. In Whitman W. (editor) Bergey's Manual of Systematic Bacteriology, 2nd ed. vol. 4 Baltimore: Williams & Wilkins; 2011 pp. 21–24
    [Google Scholar]
  5. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001; 51:1729–1735 [View Article]
    [Google Scholar]
  6. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article]
    [Google Scholar]
  7. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997; 47:249–251 [View Article][PubMed]
    [Google Scholar]
  8. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  9. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009; 37:D141–D145 [View Article][PubMed]
    [Google Scholar]
  10. Sheu SY, Li YS, Young CC, Chen WM. Hymenobacter pallidus sp. nov., isolated from a freshwater fish culture pond. Int J Syst Evol Microbiol 2017; 67:2915–2921 [View Article][PubMed]
    [Google Scholar]
  11. Hoang VA, Kim YJ, Nguyen NL, Yang DC. Hymenobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2013; 63:661–666 [View Article][PubMed]
    [Google Scholar]
  12. Kang H, Kim H, Joung Y, Kim KJ, Joh K. Hymenobacter marinus sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2016; 66:2212–2217 [View Article][PubMed]
    [Google Scholar]
  13. Chung AP, Lopes A, Nobre MF, Morais PV. Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metalli sp. nov. three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol 2010; 33:436–443 [View Article][PubMed]
    [Google Scholar]
  14. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  15. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758
    [Google Scholar]
  16. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 21–41
    [Google Scholar]
  17. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. New York, NY: Springer; 1992 pp. 3631–3675
    [Google Scholar]
  18. Schmidt K, Connor A, Britton G. Analysis of pigments: carotenoids and related polyenes. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 403–461
    [Google Scholar]
  19. Breznak JA, Costilow RN. Physicochemical factors in growth. In Reddy CA, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 309–329
    [Google Scholar]
  20. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  21. Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35:213–219 [View Article]
    [Google Scholar]
  22. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article]
    [Google Scholar]
  23. Chang SC, Wang JT, Vandamme P, Hwang JH, Chang PS et al. Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 2004; 27:43–49 [View Article][PubMed]
    [Google Scholar]
  24. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
  25. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  26. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  28. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 121–161
    [Google Scholar]
  29. Kang JW, Lee JH, Baik KS, Lee SS, Seong CN. Hymenobacter wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2015; 65:1871–1876 [View Article][PubMed]
    [Google Scholar]
  30. Liu L, Zhou EM, Jiao JY, Manikprabhu D, Ming H et al. Hymenobacter latericoloratus sp. nov. and Hymenobacter luteus sp. nov., isolated from freshwater sediment. Antonie van Leeuwenhoek 2015; 107:165–172 [View Article][PubMed]
    [Google Scholar]
  31. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 265–309
    [Google Scholar]
  32. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  33. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  34. Busse HJ, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47:698–708 [View Article]
    [Google Scholar]
  35. Kang JY, Chun J, Choi A, Moon SH, Cho JC et al. Hymenobacter koreensis sp. nov. and Hymenobacter saemangeumensis sp. nov., isolated from estuarine water. Int J Syst Evol Microbiol 2013; 63:4568–4573 [View Article][PubMed]
    [Google Scholar]
  36. Chen WM, Chen ZH, Young CC, Sheu SY. Hymenobacter paludis sp. nov., isolated from a marsh. Int J Syst Evol Microbiol 2016; 66:1546–1553 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.002657
Loading
/content/journal/ijsem/10.1099/ijsem.0.002657
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error