1887

Abstract

A Gram-stain-negative, non-motile, aerobic and rod-shaped bacterial strain, designated RA3-3-1, was isolated from splendid alfonsino (Beryxsplendens) collected from the North Pacific Ocean. Strain RA3-3-1 grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–3.0 % (w/v) NaCl. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain RA3-3-1 belonged to the genus Bizionia , clustering with the type strain of Bizionia fulviae . Strain RA3-3-1 exhibited 16S rRNA gene sequence similarities of 98.7, 97.6 and 97.3 % to the type strains of B. fulviae , Bizionia paragorgiae and Bizionia saleffrena , respectively, and of 95.5–96.4 % to the type strains of the other Bizionia species. Strain RA3-3-1 contained MK-6 as the predominant menaquinone and anteiso-C15 : 0, iso-C16 : 0 3-OH, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), iso-C17 : 0 3-OH, iso-C15 : 0 and C17 : 0 2-OH as the major fatty acids. The major polar lipids detected in strain RA3-3-1 were phosphatidylethanolamine, one unidentified lipid and one unidentified aminolipid. The DNA G+C content of strain RA3-3-1 was 34.1 mol% and its DNA–DNA relatedness values with the type strains of B. fulviae , B. paragorgiae and B. saleffrena were 12–29 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain RA3-3-1 is separate from recognized species of the genus Bizionia . On the basis of the data presented, strain RA3-3-1 is considered to represent a novel species of the genus Bizionia , for which the name Bizionia berychis sp. nov. is proposed. The type strain is RA3-3-1 (=KCTC 62140=NBRC 113024).

Erratum
This article contains a correction applying to the following content:
Corrigendum: Bizionia berychis sp. nov., isolated from intestinal tract of a splendid alfonsino (Beryx splendens)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002656
2018-02-22
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1227.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002656&mimeType=html&fmt=ahah

References

  1. Bernardet JF. Family I. Flavobacteriaceae Reichenbach 1992. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 New York: Springer; 2011; pp. 106– 111
    [Google Scholar]
  2. Nedashkovskaya OI, Kim SB, Lysenko AM, Frolova GM, Mikhailov VV et al. Bizionia paragorgiae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the soft coral Paragorgia arborea. Int J Syst Evol Microbiol 2005; 55: 375– 378 [CrossRef] [PubMed]
    [Google Scholar]
  3. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42: D613– D616 [CrossRef] [PubMed]
    [Google Scholar]
  4. Zhang H, Shi MJ, Xia HF, Chen GJ, du ZJ. Bizionia sediminis sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2017; 67: 2263– 2267 [CrossRef] [PubMed]
    [Google Scholar]
  5. Bowman JP, Nichols DS. Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol 2005; 55: 1471– 1486 [CrossRef] [PubMed]
    [Google Scholar]
  6. Bercovich A, Vazquez SC, Yankilevich P, Coria SH, Foti M et al. Bizionia argentinensis sp. nov., isolated from surface marine water in Antarctica. Int J Syst Evol Microbiol 2008; 58: 2363– 2367 [CrossRef] [PubMed]
    [Google Scholar]
  7. Nedashkovskaya OI, Vancanneyt M, Kim SB. Bizionia echini sp. nov., isolated from a sea urchin. Int J Syst Evol Microbiol 2010; 60: 928– 931 [CrossRef] [PubMed]
    [Google Scholar]
  8. Yoon JH, Kang CH, Jung YT, Kang SJ. Bizionia hallyeonensis sp. nov., isolated from seawater in an oyster farm. Int J Syst Evol Microbiol 2013; 63: 685– 690 [CrossRef] [PubMed]
    [Google Scholar]
  9. Song EJ, Lee MH, Seo MJ, Yim KJ, Hyun DW et al. Bizionia psychrotolerans sp. nov., a psychrophilic bacterium isolated from the intestine of a sea cucumber (Apostichopus japonicus). Antonie van Leeuwenhoek 2014; 106: 837– 844 [CrossRef] [PubMed]
    [Google Scholar]
  10. Li H, Zhang XY, Liu C, Liu A, Qin QL et al. Bizionia arctica sp. nov., isolated from Arctic fjord seawater, and emended description of the genus Bizionia. Int J Syst Evol Microbiol 2015; 65: 2925– 2930 [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim HS, Hyun DW, Kim PS, Lee JY, Shin NR et al. Bizionia fulviae sp. nov., isolated from the gut of an egg cockle, Fulvia mutica. Int J Syst Evol Microbiol 2015; 65: 3066– 3072 [CrossRef] [PubMed]
    [Google Scholar]
  12. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64: 2969– 2974 [CrossRef] [PubMed]
    [Google Scholar]
  13. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50: 1861– 1868 [CrossRef]
    [Google Scholar]
  14. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1– 67
    [Google Scholar]
  15. Barrow GI, Cowan F. Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993; [Crossref]
    [Google Scholar]
  16. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51: 1997– 2006 [CrossRef] [PubMed]
    [Google Scholar]
  17. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070
    [Google Scholar]
  18. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. New York: Springer; 1992; pp. 3631– 3675
    [Google Scholar]
  19. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes Berlin: Springer; 1981; pp. 1302– 1331
    [Google Scholar]
  20. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957; 49: 25– 68 [CrossRef] [PubMed]
    [Google Scholar]
  21. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95: 1921– 1942 [PubMed]
    [Google Scholar]
  22. Yoon JH, Kim H, Kim SB, Kim HJ, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996; 46: 502– 505 [CrossRef]
    [Google Scholar]
  23. Yoon JH, Lee ST, Kim SB, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47: 111– 114 [CrossRef]
    [Google Scholar]
  24. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 2003; 53: 53– 57 [CrossRef] [PubMed]
    [Google Scholar]
  25. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  26. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  29. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp. 121– 161
    [Google Scholar]
  30. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  31. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  32. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002656
Loading
/content/journal/ijsem/10.1099/ijsem.0.002656
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error