1887

Abstract

A beige-pigmented bacterial strain, SB30-Chr27-3, isolated from a garden pond, was studied for its taxonomic position. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence with the sequences of the type strains of the most closely related species showed that the strain belongs to the genus Comamonas and showed highest sequence similarities to the type strains of Comamonas jiangduensis (97.5 %), Comamonas aquatica (97.4 %) and Comamonas phosphati (97.3 %). The 16S rRNA gene sequence similarities to all other Comamonas species were below 97.0 %. The fatty acid profile of strain SB30-Chr27-3 consisted of the major fatty acids C16 : 0, C15 : 0iso 2-OH/ C16 : 1ω7c, C18 : 1ω7c/C18 : 1 ω9c and, in a minor amount, C10 : 0 3-OH. Major compounds in the polar lipid profile were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine and diphosphatidylglycerol. The quinone system was exclusively composed of ubiquinone Q-8. The polyamine pattern contained the major compounds putrescine, cadaverine and 2-hydroxyputrescine. These data and the differentiating biochemical properties indicated that isolate SB30-CHR27-3 represents a novel species of the genus Comamonas , for which we propose the name >Comamonas aquatilis sp. nov. with the type strain SB30-Chr27-3 (=CIP 111491=CCM 8815).

Keyword(s): aquatilis , Comamonas and taxonomy
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002652
2018-02-23
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1210.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002652&mimeType=html&fmt=ahah

References

  1. Davis GH, Park RW. A taxonomic study of certain bacteria currently classified as Vibrio species. J Gen Microbiol 1962; 27: 101– 119 [CrossRef] [PubMed]
    [Google Scholar]
  2. De Vos P, Kersters K, Falsen E, Pot B, Gillis M et al. Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int J Syst Bacteriol 1985; 35: 443– 453 [CrossRef]
    [Google Scholar]
  3. Tamaoka J, Ha D-M, Komagata K. Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. Int J Syst Bacteriol 1987; 37: 52– 59 [CrossRef]
    [Google Scholar]
  4. Wen A, Fegan M, Hayward C, Chakraborty S, Sly LI. Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int J Syst Bacteriol 1999; 49: 567– 576 [CrossRef] [PubMed]
    [Google Scholar]
  5. Wauters G, de Baere T, Willems A, Falsen E, Vaneechoutte M. Description of Comamonas aquatica comb. nov. and Comamonas kerstersii sp. nov. for two subgroups of Comamonas terrigena and emended description of Comamonas terrigena. Int J Syst Evol Microbiol 2003; 53: 859– 862 [CrossRef] [PubMed]
    [Google Scholar]
  6. Tago Y, Yokota A. Comamonas badia sp. nov., a floc-forming bacterium isolated from activated sludge. J Gen Appl Microbiol 2004; 50: 243– 248 [CrossRef] [PubMed]
    [Google Scholar]
  7. Young CC, Chou JH, Arun AB, Yen WS, Sheu SY et al. Comamonas composti sp. nov., isolated from food waste compost. Int J Syst Evol Microbiol 2008; 58: 251– 256 [CrossRef] [PubMed]
    [Google Scholar]
  8. Gumaelius L, Magnusson G, Pettersson B, Dalhammar G. Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2001; 51: 999– 1006 [CrossRef] [PubMed]
    [Google Scholar]
  9. Kim KH, Ten LN, Liu QM, Im WT, Lee ST. Comamonas granuli sp. nov., isolated from granules used in a wastewater treatment plant. J Microbiol 2008; 46: 390– 395 [CrossRef] [PubMed]
    [Google Scholar]
  10. Zhang J, Wang Y, Zhou S, Wu C, He J et al. Comamonas guangdongensis sp. nov., isolated from subterranean forest sediment, and emended description of the genus Comamonas. Int J Syst Evol Microbiol 2013; 63: 809– 814 [CrossRef] [PubMed]
    [Google Scholar]
  11. Sun LN, Zhang J, Chen Q, He J, Li QF et al. Comamonas jiangduensis sp. nov., a biosurfactant-producing bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2013; 63: 2168– 2173 [CrossRef] [PubMed]
    [Google Scholar]
  12. Chang YH, Han JI, Chun J, Lee KC, Rhee MS et al. Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int J Syst Evol Microbiol 2002; 52: 377– 381 [CrossRef] [PubMed]
    [Google Scholar]
  13. Etchebehere C, Errazquin MI, Dabert P, Moletta R, Muxí L. Comamonas nitrativorans sp. nov., a novel denitrifier isolated from a denitrifying reactor treating landfill leachate. Int J Syst Evol Microbiol 2001; 51: 977– 983 [CrossRef] [PubMed]
    [Google Scholar]
  14. Chou JH, Sheu SY, Lin KY, Chen WM, Arun AB et al. Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus. Int J Syst Evol Microbiol 2007; 57: 887– 891 [CrossRef] [PubMed]
    [Google Scholar]
  15. Xie F, Ma H, Quan S, Liu D, Chen G. Comamonas phosphati sp. nov., isolated from a phosphate mine. Int J Syst Evol Microbiol 2016; 66: 456– 461 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kang W, Soo Kim P, Hyun DW, Lee JY, Sik Kim H et al. Comamonas piscis sp. nov., isolated from the intestine of a Korean rockfish, Sebastes schlegelii. Int J Syst Evol Microbiol 2016; 66: 780– 785 [CrossRef] [PubMed]
    [Google Scholar]
  17. Subhash Y, Bang JJ, You TH, Lee SS. Description of Comamonas sediminis sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66: 2735– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  18. Zhu D, Xie C, Huang Y, Sun J, Zhang W. Description of Comamonas serinivorans sp. nov., isolated from wheat straw compost. Int J Syst Evol Microbiol 2014; 64: 4141– 4146 [CrossRef] [PubMed]
    [Google Scholar]
  19. Chipirom K, Tanasupawat S, Akaracharanya A, Leepepatpiboon N, Prange A et al. Comamonas terrae sp. nov., an arsenite-oxidizing bacterium isolated from agricultural soil in Thailand. J Gen Appl Microbiol 2012; 58: 245– 251 [CrossRef] [PubMed]
    [Google Scholar]
  20. Narayan KD, Pandey SK, das SK. Characterization of Comamonas thiooxidans sp. nov., and comparison of thiosulfate oxidation with Comamonas testosteroni and Comamonas composti. Curr Microbiol 2010; 61: 248– 253 [CrossRef] [PubMed]
    [Google Scholar]
  21. Yu XY, Li YF, Zheng JW, Li Y, Li L et al. Comamonas zonglianii sp. nov., isolated from phenol-contaminated soil. Int J Syst Evol Microbiol 2011; 61: 255– 258 [CrossRef] [PubMed]
    [Google Scholar]
  22. Marcus PI, Talalay P. Induction and purification of alpha- and beta-hydroxysteroid dehydrogenases. J Biol Chem 1956; 218: 661– 674 [PubMed]
    [Google Scholar]
  23. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics London: Wiley; 1990; pp. 115– 175
    [Google Scholar]
  24. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978; 75: 4801– 4805 [CrossRef] [PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  26. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32: 1363– 1371 [CrossRef] [PubMed]
    [Google Scholar]
  27. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31: 241– 250 [CrossRef] [PubMed]
    [Google Scholar]
  28. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28: 1823– 1829 [CrossRef] [PubMed]
    [Google Scholar]
  29. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22: 2688– 2690 [CrossRef] [PubMed]
    [Google Scholar]
  30. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp. 21– 132 [Crossref]
    [Google Scholar]
  31. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6 Distributed by the author Department of Genome Sciences, University of Washington, Seattle; 2005
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  33. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989; 8: 151– 156 [CrossRef]
    [Google Scholar]
  34. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998; 48: 179– 186 [CrossRef] [PubMed]
    [Google Scholar]
  35. Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  36. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21: 227– 251 [CrossRef] [PubMed]
    [Google Scholar]
  37. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42: 989– 1005 [CrossRef]
    [Google Scholar]
  38. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11: 1– 8 [CrossRef]
    [Google Scholar]
  39. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  40. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  41. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47: 39– 52 [CrossRef]
    [Google Scholar]
  42. Busse HJ, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47: 698– 708 [CrossRef]
    [Google Scholar]
  43. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57: 572– 576 [CrossRef] [PubMed]
    [Google Scholar]
  44. Hamana K, Sato W, Gouma K, Yu J, Ino Y et al. Cellular polyamine catalogues of the five classes of the phylum Proteobacteria: distributions of homospermidine within the class Alphaproteobacteria, hydroxyputrescine within the class Betaproteobacteria, norspermidine within the class Gammaproteobacteria, and spermidine within the classes Deltaproteobacteria and Epsilonproteobacteria. Ann Gunma Health Sci 2006; 27: 1– 16
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002652
Loading
/content/journal/ijsem/10.1099/ijsem.0.002652
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error