1887

Abstract

A Gram-stain-negative, rod-shaped bacterium, strain 4-12, was isolated from the rhizosphere of L. from the Xiaokai River irrigation area, China. The isolate grew optimally at 30 °C, pH 7.5–8.0 and with 1.0 % (w/v) NaCl. Based on the 16S rRNA gene sequence and phylogenetic analysis, strain 4-12 belonged to the genus with the highest degree of 16S rRNA gene sequence similarity to UM1 (97.68 %), followed by THG-MD21 (97.67 %), Gsoil 068 (97.21 %) and B9 (97.16 %). However, the DNA–DNA relatedness values between strain 4-12 and closely related strains were well below 40 %. The average nucleotide identity and the Genome-to-Genome Distance Calculator also showed low relatedness (below 95 and 70 %, respectively) between strain 4-12 and the type strains in genus . Ubiquinone-8 was the predominant quinone. The major fatty acids were iso-C, iso-C, iso-C and iso-Cω9. Polar lipids were dominated by diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unidentified phospholipids. The DNA G+C content was 69.5 %. According to the phenotypic, genetic and chemotaxonomic data, strain 4-12 is considered to represent a novel species in the genus , for which the name sp. nov. is proposed, with strain 4-12 (=CCTCC AB 2016261=KCTC 52585) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002649
2018-04-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1197.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002649&mimeType=html&fmt=ahah

References

  1. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000;50:273–282 [CrossRef][PubMed]
    [Google Scholar]
  2. Baik KS, Park SC, Kim MS, Kim EM, Park C et al. Luteimonas marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008;58:2904–2908 [CrossRef][PubMed]
    [Google Scholar]
  3. Chou JH, Cho NT, Arun AB, Young CC, Chen WM. Luteimonas aquatica sp. nov., isolated from fresh water from Southern Taiwan. Int J Syst Evol Microbiol 2008;58:2051–2055 [CrossRef][PubMed]
    [Google Scholar]
  4. Wu G, Liu Y, Li Q, du H, You J et al. Luteimonas huabeiensis sp. nov., isolated from stratum water. Int J Syst Evol Microbiol 2013;63:3352–3357 [CrossRef][PubMed]
    [Google Scholar]
  5. Ten LN, Jung HM, Im WT, Yoo SA, Oh HM et al. Lysobacter panaciterrae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2009;59:958–963 [CrossRef][PubMed]
    [Google Scholar]
  6. Zhang DC, Liu HC, Xin YH, Zhou YG, Schinner F et al. Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2010;60:1581–1584 [CrossRef][PubMed]
    [Google Scholar]
  7. Ngo HT, Yin CS. Luteimonas terrae sp. nov., isolated from rhizosphere soil of Radix ophiopogonis. Int J Syst Evol Microbiol 2016;66:1920–1925 [CrossRef][PubMed]
    [Google Scholar]
  8. Cheng J, Zhang MY, Wang WX, Manikprabhu D, Salam N et al. Luteimonas notoginsengisoli sp. nov., isolated from rhizosphere. Int J Syst Evol Microbiol 2016;66:946–950 [CrossRef][PubMed]
    [Google Scholar]
  9. Rani P, Mukherjee U, Verma H, Kamra K, Lal R. Luteimonas tolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2016;66:1851–1856 [CrossRef][PubMed]
    [Google Scholar]
  10. Romanenko LA, Tanaka N, Svetashev VI, Kurilenko VV, Mikhailov VV. Luteimonas vadosa sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol 2013;63:1261–1266 [CrossRef][PubMed]
    [Google Scholar]
  11. Roh SW, Kim KH, Nam YD, Chang HW, Kim MS et al. Luteimonas aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 2008;46:525–529 [CrossRef][PubMed]
    [Google Scholar]
  12. Fan X, Yu T, Li Z, Zhang XH. Luteimonas abyssi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014;64:668–674 [CrossRef][PubMed]
    [Google Scholar]
  13. Young CC, Kämpfer P, Chen WM, Yen WS, Arun AB et al. Luteimonas composti sp. nov., a moderately thermophilic bacterium isolated from food waste. Int J Syst Evol Microbiol 2007;57:741–744 [CrossRef][PubMed]
    [Google Scholar]
  14. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008;74:2461–2470 [CrossRef][PubMed]
    [Google Scholar]
  15. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  16. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  22. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  23. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  26. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992;8:451–452 [CrossRef][PubMed]
    [Google Scholar]
  27. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982;16:772–774[PubMed]
    [Google Scholar]
  28. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002;25:360–375 [CrossRef][PubMed]
    [Google Scholar]
  29. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493–496[PubMed][Crossref]
    [Google Scholar]
  30. Stead DE, Sellwood JE, Wilson J, Viney I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 1992;72:315–321 [CrossRef]
    [Google Scholar]
  31. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002649
Loading
/content/journal/ijsem/10.1099/ijsem.0.002649
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error