1887

Abstract

A novel, non-motile, coccoid, Gram-stain-positive actinobacterium, designated BMG 862, was isolated from a marble sample collected from the Bulla Regia monument, Northern Tunisia. Its taxonomic position was determined using a polyphasic approach. Results from chemotaxonomic analyses showed MK-9(H4), MK-8(H4) and MK-9(H2) as the predominant menaquinones. The major polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, glycophosphatidylinositol, hydroxy-phosphatidylethanolamine and three unidentified phospholipids. The fatty acids consisted of significant amounts (≥10 %) of iso-C16 : 0, C17 : 1ω8c, iso-C15 : 0 and C16 : 1ω7c. Phylogenetic analysis on the basis of 16S rRNA gene sequence comparisons showed that strain BMG 862 belongs to the genus Blastococcus , being most closely related to Blastococcus saxobsidens (=DSM 44509) (99.5 %) and Blastococcus capsensis (=DSM 46835=CECT 8876) (99.3 %). The genomic DNA G+C content of the organism was 74.7 mol%. Results of DNA–DNA hybridization and physiological tests allowed differentiation of strain BMG 862 from related species. The strain was also characterized by its ability to hydrolyse xanthine. On the basis of phenotypic and molecular characteristics, strain BMG 862 (=DSM 46842=CECT 8884) represents the type strain of a novel species of the genus Blastococcus , for which the name Blastococcus xanthinilyticus sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002646
2018-02-19
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1177.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002646&mimeType=html&fmt=ahah

References

  1. Normand P. Geodermatophilaceae fam. nov., a formal description. Int J Syst Evol Microbiol 2006; 56: 2277– 2278 [CrossRef] [PubMed]
    [Google Scholar]
  2. Ahrens R, Moll G. Ein neues knospendes Bakterium aus der Ostsee. Archiv Mikrobiologie 1970; 70: 243– 265 [CrossRef]
    [Google Scholar]
  3. Urzì C, Salamone P, Schumann P, Rohde M, Stackebrandt E. Blastococcus saxobsidens sp. nov., and emended descriptions of the genus Blastococcus Ahrens and Moll 1970 and Blastococcus aggregatus Ahrens and Moll 1970. Int J Syst Evol Microbiol 2004; 54: 253– 259 [CrossRef] [PubMed]
    [Google Scholar]
  4. Lee SD. Blastococcus jejuensis sp. nov., an actinomycete from beach sediment, and emended description of the genus Blastococcus Ahrens and Moll 1970. Int J Syst Evol Microbiol 2006; 56: 2391– 2396 [CrossRef] [PubMed]
    [Google Scholar]
  5. Hezbri K, Louati M, Nouioui I, Gtari M, Rohde M et al. Blastococcus capsensis sp. nov., isolated from an archaeological Roman pool and emended description of the genus Blastococcus, B. aggregatus, B. saxobsidens, B. jejuensis and B. endophyticus. Int J Syst Evol Microbiol 2016; 66: 4864– 4872 [CrossRef] [PubMed]
    [Google Scholar]
  6. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47: 479– 491 [CrossRef]
    [Google Scholar]
  7. Zhu WY, Zhang JL, Qin YL, Xiong ZJ, Zhang DF et al. Blastococcus endophyticus sp. nov., an actinobacterium isolated from Camptotheca acuminata. Int J Syst Evol Microbiol 2013; 63: 3269– 3273 [CrossRef] [PubMed]
    [Google Scholar]
  8. Hezbri K, Nouioui I, Rohde M, Schumann P, Gtari M et al. Blastococcus colisei sp. nov, isolated from an archaeological amphitheatre. Antonie van Leeuwenhoek 2017; 110: 339– 346 [CrossRef] [PubMed]
    [Google Scholar]
  9. Xi L, Ruan J, Huang Y. Diversity and biosynthetic potential of culturable actinomycetes associated with marine sponges in the China Seas. Int J Mol Sci 2012; 13: 5917– 5932 [CrossRef] [PubMed]
    [Google Scholar]
  10. Urzì C, Brusetti L, Salamone P, Sorlini C, Stackebrandt E et al. Biodiversity of Geodermatophilaceae isolated from altered stones and monuments in the Mediterranean basin. Environ Microbiol 2001; 3: 471– 479 [CrossRef] [PubMed]
    [Google Scholar]
  11. Gtari M, Essoussi I, Maaoui R, Sghaier H, Boujmil R et al. Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol Ecol 2012; 80: 566– 577 [CrossRef] [PubMed]
    [Google Scholar]
  12. Sghaier H, Hezbri K, Ghodhbane-Gtari F, Pujic P, Sen A et al. Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes. Isme J 2016; 10: 21– 29 [CrossRef] [PubMed]
    [Google Scholar]
  13. Reasoner DJ, Blannon JC, Geldreich EE. Rapid seven-hour fecal coliform test. Appl Environ Microbiol 1979; 38: 229– 236 [PubMed]
    [Google Scholar]
  14. Luedemann GM. Geodermatophilus, a new genus of the Dermatophilaceae (Actinomycetales). J Bacteriol 1968; 96: 1848– 1858 [PubMed]
    [Google Scholar]
  15. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  16. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978; 5: 123– 127 [CrossRef]
    [Google Scholar]
  17. Shungu D, Valiant M, Tutlane V, Weinberg E, Weissberger B et al. GELRITE as an agar substitute in bacteriological media. Appl Environ Microbiol 1983; 46: 840– 845 [PubMed]
    [Google Scholar]
  18. Gordon RE, Smith MM. Proposed group of characters for the separation of Streptomyces and Nocardia. J Bacteriol 1955; 69: 147– 150 [PubMed]
    [Google Scholar]
  19. Clarke SK. A simplified plate method for detecting gelatine-liquefying bacteria. J Clin Pathol 1953; 6: 246– 248 [CrossRef] [PubMed]
    [Google Scholar]
  20. Swan A. The use of a bile-aesculin medium and of Maxted's technique of Lancefield grouping in the identification of enterococci (group D streptococci). J Clin Pathol 1954; 7: 160– 163 [CrossRef] [PubMed]
    [Google Scholar]
  21. Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 2013; 29: 1823– 1824 [CrossRef] [PubMed]
    [Google Scholar]
  22. Vaas LA, Sikorski J, Michael V, Göker M, Klenk HP. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 2012; 7: e34846 [CrossRef] [PubMed]
    [Google Scholar]
  23. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  24. Kroppenstedt R, Goodfellow M. The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora. In The Prokaryotesvol. 3 New York, NY, USA: Springer; 2006; pp. 682– 724 [Crossref]
    [Google Scholar]
  25. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  26. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  27. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5: 2359– 2367 [CrossRef]
    [Google Scholar]
  28. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20: 435– 443 [CrossRef]
    [Google Scholar]
  29. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28: 226– 231 [PubMed]
    [Google Scholar]
  30. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36: 407– 477 [PubMed]
    [Google Scholar]
  31. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20: 16
    [Google Scholar]
  32. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  33. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996; 46: 1088– 1092 [CrossRef] [PubMed]
    [Google Scholar]
  34. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  35. Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR et al. The RDP-II (Ribosomal Database Project). Nucleic Acids Res 2001; 29: 173– 174 [CrossRef] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9: 2 [CrossRef] [PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195: 413– 418 [CrossRef] [PubMed]
    [Google Scholar]
  39. Cashion P, Holder-Franklin MA, McCully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81: 461– 466 [CrossRef] [PubMed]
    [Google Scholar]
  40. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  41. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
    [Google Scholar]
  42. Normand P, Daffonchio D, Gtari M. The family Geodermatophilaceae. In Procaryote Berlin Heidelberg: Springer; 2014; pp. 361– 379
    [Google Scholar]
  43. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  44. Chouaia B, Crotti E, Brusetti L, Daffonchio D, Essoussi I et al. Genome sequence of Blastococcus saxobsidens DD2, a stone-inhabiting bacterium. J Bacteriol 2012; 194: 2752– 2753 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002646
Loading
/content/journal/ijsem/10.1099/ijsem.0.002646
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error