1887

Abstract

A novel, Gram-stain-negative, aerobic, rod-shaped, motile and moderately halophilic bacterium, designated strain LCB169, was isolated from a saline soil sample from Gansu Province, PR China. The cells of LCB169 grew at 10–52 °C (optimum 30 °C), at pH 6.0–10.0 (optimum pH 8.0) and in the presence of 0–17 % (w/v) NaCl (optimum 10–15 %). Phylogenetic analysis based on 16S rRNA gene sequences and concatenated 16S rRNA, and genes sequences revealed that LCB169 represented a member of the genus in the class . The most closely related species were DQD2-30 (98.0 % 16S rRNA gene sequence similarity), AIR-2 (97.8 %) and FB2 (97.5 %). DNA–DNA relatedness values between LCB169 and CGMCC 1.6443, DSM 9502 and DSM 17331 were 33, 35 and 38 %, respectively. The polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and three unidentified phospholipids. The major fatty acids were Cω7, C, Cω7 and C 3-OH. The genomic DNA G+C content was 66.1 mol% and the predominant respiratory quinone was Q-9. On the basis of the results of phenotypic, phylogenetic and chemotaxonomic analyses and DNA–DNA hybridization relatedness values, LCB169 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LCB169 (=CGMCC 1.15818=KCTC 52618).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002644
2018-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1153.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002644&mimeType=html&fmt=ahah

References

  1. Vreeland RH, Litchfield CD, Martin EL, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 1980; 30:485–495 [View Article]
    [Google Scholar]
  2. Dobson SJ, Franzmann PD. Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 1996; 46:550–558 [View Article]
    [Google Scholar]
  3. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST et al. Bergey’s Manual of Determinative Bacteriology vol. 9 Baltimore, MD: Lippincott Williams & Wilkins; 2000
    [Google Scholar]
  4. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ et al. Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 2007; 57:2436–2446 [View Article][PubMed]
    [Google Scholar]
  5. de La Haba RR, Márquez MC, Papke RT, Ventosa A. Multilocus sequence analysis of the family Halomonadaceae . Int J Syst Evol Microbiol 2012; 62:520–538 [View Article][PubMed]
    [Google Scholar]
  6. Amjres H, Béjar V, Quesada E, Abrini J, Llamas I. Halomonas rifensis sp. nov., an exopolysaccharide-producing, halophilic bacterium isolated from a solar saltern. Int J Syst Evol Microbiol 2011; 61:2600–2605 [View Article][PubMed]
    [Google Scholar]
  7. Sánchez-Porro C, Martín S, Mellado E, Ventosa A. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 2003; 94:295–300 [View Article][PubMed]
    [Google Scholar]
  8. García MT, Mellado E, Ostos JC, Ventosa A. Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 2004; 54:1723–1728 [View Article][PubMed]
    [Google Scholar]
  9. Qu L, Lai Q, Zhu F, Hong X, Zhang J et al. Halomonas daqiaonensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from a littoral saltern. Int J Syst Evol Microbiol 2011; 61:1612–1616 [View Article][PubMed]
    [Google Scholar]
  10. González-Domenech CM, Béjar V, Martínez-Checa F, Quesada E. Halomonas nitroreducens sp. nov., a novel nitrate- and nitrite-reducing species. Int J Syst Evol Microbiol 2008; 58:872–876 [View Article][PubMed]
    [Google Scholar]
  11. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  13. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  20. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5:109–118 [View Article][PubMed]
    [Google Scholar]
  21. Quillaguamán J, Hatti-Kaul R, Mattiasson B, Alvarez MT, Delgado O. Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 2004; 54:721–725 [View Article][PubMed]
    [Google Scholar]
  22. Martínez-Cánovas MJ, Quesada E, Llamas I, Béjar V. Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 2004; 54:733–737 [View Article][PubMed]
    [Google Scholar]
  23. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  24. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [Crossref]
    [Google Scholar]
  25. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  26. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981 pp. 25–29
    [Google Scholar]
  27. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  28. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  29. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [View Article][PubMed]
    [Google Scholar]
  30. Hiraishi A, Hoshino Y. Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications. J Gen Appl Microbiol 1984; 30:435–448 [View Article]
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  32. Kates M. Techniques of Lipidology, 2nd ed. Amsterdam: Elsevier; 1986
    [Google Scholar]
  33. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  34. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61:1165–1169 [View Article][PubMed]
    [Google Scholar]
  35. Wu G, Wu XQ, Wang YN, Chi CQ, Tang YQ et al. Halomonas daqingensis sp. nov., a moderately halophilic bacterium isolated from an oilfield soil. Int J Syst Evol Microbiol 2008; 58:2859–2865 [View Article][PubMed]
    [Google Scholar]
  36. Berendes F, Gottschalk G, Heine-Dobbernack E, Moore ERB, Tindall BJ et al. Halomonas desiderata sp. nov, a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works. Syst Appl Microbiol 1996; 19:158–167 [View Article]
    [Google Scholar]
  37. Boltyanskaya YuV, Kevbrin VV, Lysenko AM, Kolganova TV, Tourova TP et al. Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of N2O reduction, isolated from soda lakes. Microbiology 2007; 76:739–747 [Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002644
Loading
/content/journal/ijsem/10.1099/ijsem.0.002644
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error