1887

Abstract

An aerobic, Gram-stain-negative, rod-shaped, non-motile bacterium capable of degrading the polycyclic aromatic hydrocarbon pyrene was isolated from sediment of Pearl River and designated PrR001. 16S rRNA gene sequence analysis revealed that this strain was affiliated within the genus Defluviimonas in the family Rhodobacteraceae of the class Alphaproteobacteria and showed great similarity with the type strain Defluviimonas indica 20V17 (96.3 % similarity). The DNA G+C content of strain PrR001 was 68.3 mol%. The major cellular fatty acids comprised summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C19 : 0 cyclo ω8c, C18 : 0 3OH, and C18 : 0. The sole respiratory lipoquinone was ubiquinone-10. The main polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminolipid, an unidentified aminophospholipid and three unidentified phospholipids. Based on physiological, chemotaxonomic and phylogenetic analysis, strain PrR001 is suggested as a novel species in the genus Defluviimonas , for which the name Defluviimonas pyrenivorans sp. nov. is proposed. The type strain of Defluviimonas pyrenivorans is PrR001 (=CICC 24263=KCTC 62192).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002629
2018-02-05
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/957.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002629&mimeType=html&fmt=ahah

References

  1. Foesel BU, Drake HL, Schramm A. Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture. Syst Appl Microbiol 2011; 34: 498– 502 [CrossRef] [PubMed]
    [Google Scholar]
  2. Math RK, Jin HM, Jeong SH, Jeon CO. Defluviimonas aestuarii sp. nov., a marine bacterium isolated from a tidal flat, and emended description of the genus Defluviimonas Foesel et al. 2011. Int J Syst Evol Microbiol 2013; 63: 2895– 2900 [CrossRef] [PubMed]
    [Google Scholar]
  3. Jiang L, Xu H, Shao Z, Long M. Defluviimonas indica sp. nov., a marine bacterium isolated from a deep-sea hydrothermal vent environment. Int J Syst Evol Microbiol 2014; 64: 2084– 2088 [CrossRef] [PubMed]
    [Google Scholar]
  4. Jung YT, Park S, Lee JS, Yoon JH. Defluviimonas aquaemixtae sp. nov., isolated from the junction between a freshwater spring and the ocean. Int J Syst Evol Microbiol 2014; 64: 4191– 4197 [CrossRef] [PubMed]
    [Google Scholar]
  5. Pan XC, Geng S, Lv XL, Mei R, Jiangyang JH et al. Defluviimonas alba sp. nov., isolated from an oilfield. Int J Syst Evol Microbiol 2015; 65: 1805– 1811 [CrossRef] [PubMed]
    [Google Scholar]
  6. Liu Y, Lai Q, Wang W, Shao Z. Defluviimonas nitratireducens sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2017; 67: 2752– 2757 [CrossRef] [PubMed]
    [Google Scholar]
  7. Wang H, Wang B, Dong W, Hu X. Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures. Sci Rep 2016; 6: 34588 [CrossRef] [PubMed]
    [Google Scholar]
  8. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31: 575 [PubMed]
    [Google Scholar]
  9. Wang H, Laughinghouse HD, Anderson MA, Chen F, Willliams E et al. Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica IMET1. Appl Environ Microbiol 2012; 78: 1445– 1453 [CrossRef] [PubMed]
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  11. Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol 2005; 71: 5665– 5677 [CrossRef] [PubMed]
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  13. Nedashkovskaya OI, Kim SB, Han SK, Rhee MS, Lysenko AM et al. Ulvibacter litoralis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the green alga Ulva fenestrata. Int J Syst Evol Microbiol 2004; 54: 119– 123 [CrossRef] [PubMed]
    [Google Scholar]
  14. Yi H, Chun J. Hongiella mannitolivorans gen. nov., sp. nov., Hongiella halophila sp. nov. and Hongiella ornithinivorans sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2004; 54: 157– 162 [CrossRef] [PubMed]
    [Google Scholar]
  15. Gomori G. Preparation of buffers for use in enzyme studies. Methods enzymol 1955; 1: 138– 146 [Crossref]
    [Google Scholar]
  16. Lai Q, Liu Y, Shao Z. Bacillus xiamenensis sp. nov., isolated from intestinal tract contents of a flathead mullet (Mugil cephalus). Antonie van Leeuwenhoek 2014; 105: 99– 107 [CrossRef] [PubMed]
    [Google Scholar]
  17. Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 2005; 55: 1181– 1186 [CrossRef] [PubMed]
    [Google Scholar]
  18. Shieh WY, Chen YW, Chaw SM, Chiu HH. Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. Int J Syst Evol Microbiol 2003; 53: 479– 484 [CrossRef] [PubMed]
    [Google Scholar]
  19. Mandel M, Marmur J. Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12: 195– 206 [Crossref]
    [Google Scholar]
  20. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  21. Kates M. Radioisotopic techniques in lipidology. Techniques of Lipidology, 2nd rev ed. Amsterdam: Elsevier; 1986
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002629
Loading
/content/journal/ijsem/10.1099/ijsem.0.002629
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error