1887

Abstract

A Gram-negative rod, designated strain LLAN61, was isolated from a root nodule of Lotus lancerottensis growing in a saline soil sample from Lanzarote (Canary Islands). The strain grew optimally at 0.5 % (w/v) NaCl and tolerated up to 3.5 %. The 16S rRNA gene sequence analysis showed that strain LLAN61 belonged to genus Phyllobacterium and that Phyllobacterium leguminum ORS 1419 and Phyllobacterium myrsinacearum IAM 13584 are the closest related species with 97.93 and 97.86% similarity values, respectively. In the atpD phylogeny, P. leguminum ORS 1419 and P. myrsinacearum ATCC 43591, sharing similarities of 87.6 and 85.8% respectively, were also the closest species to strain LLAN61. DNA–DNA hybridization showed an average value of 21 % between strain LLAN61 and P. leguminum LMG 22833, and 6 % with P. myrsinacearum ATCC 43590. The predominant fatty acids were C19 : 0 cyclo ω8c and C18 : 1ω6c/C18 : 1ω7c (summed feature 8). The DNA G+C content was 58.0 mol%. Strain LLAN61 differed from its closest relatives in some culture conditions and in assimilation of several carbon sources. Based upon the results of phylogeny, DNA–DNA hybridization, phenotypic tests and fatty acid analysis, this strain should be classified as a novel species of Phyllobacterium for which the name Phyllobacterium salinisoli sp. nov. is proposed (type strain LLAN61=LMG 30173 = CECT 9417).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002628
2018-02-13
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1085.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002628&mimeType=html&fmt=ahah

References

  1. Mergaert J, Swings J. Phyllobacterium. Bergey's Manual of Systematics of Archaea and Bacteria 2015
    [Google Scholar]
  2. Jurado V, Laiz L, Gonzalez JM, Hernandez-Marine M, Valens M et al. Phyllobacterium catacumbae sp. nov., a member of the order 'Rhizobiales' isolated from Roman catacombs. Int J Syst Evol Microbiol 2005; 55: 1487– 1490 [CrossRef] [PubMed]
    [Google Scholar]
  3. Mergaert J, Cnockaert MC, Swings J. Phyllobacterium myrsinacearum (subjective synonym Phyllobacterium rubiacearum) emend. Int J Syst Evol Microbiol 2002; 52: 1821– 1823 [CrossRef] [PubMed]
    [Google Scholar]
  4. Mantelin S, Saux MF, Zakhia F, Béna G, Bonneau S et al. Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol 2006; 56: 827– 839 [CrossRef] [PubMed]
    [Google Scholar]
  5. Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno N, Rivas R et al. Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 2005; 55: 1985– 1989 [CrossRef] [PubMed]
    [Google Scholar]
  6. Flores-Félix JD, Carro L, Velázquez E, Valverde Á, Cerda-Castillo E et al. Phyllobacterium endophyticum sp. nov., isolated from nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 2013; 63: 821– 826 [CrossRef] [PubMed]
    [Google Scholar]
  7. Sánchez M, Ramírez-Bahena MH, Peix A, Lorite MJ, Sanjuán J et al. Phyllobacterium loti sp. nov. isolated from nodules of Lotus corniculatus. Int J Syst Evol Microbiol 2014; 64: 781– 786 [CrossRef] [PubMed]
    [Google Scholar]
  8. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH et al. Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. Int J Syst Evol Microbiol 2015; 65: 399– 406 [CrossRef] [PubMed]
    [Google Scholar]
  9. León-Barrios M, Pérez-Yépez J, Dorta P, Garrido A, Jiménez C. Alkalinity of Lanzarote soils is a factor shaping rhizobial populations with Sinorhizobium meliloti being the predominant microsymbiont of Lotus lancerottensis. Syst Appl Microbiol 2017; 40: 171– 178 [CrossRef] [PubMed]
    [Google Scholar]
  10. Vincent JM. The cultivation, isolation and maintenance of rhizobia. In Vincent JM. (editor) A Manual for the Practical Study of Root-Nodule Oxford: Blackwell Scientific Publications; 1970; pp. 1– 13
    [Google Scholar]
  11. Sotelo M, Irisarri P, Lorite MJ, Casaretto E, Rebuffo M et al. Diversity of rhizobia nodulating Lotus corniculatus grown in northern and southern regions of Uruguay. Applied Soil Ecology 2011; 49: 197– 207 [CrossRef]
    [Google Scholar]
  12. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P et al. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 2001; 147: 981– 993 [CrossRef] [PubMed]
    [Google Scholar]
  13. Rivas R, García-Fraile P, Peix A, Mateos PF, Martínez-Molina E et al. Alcanivorax balearicus sp. nov., isolated from Lake Martel. Int J Syst Evol Microbiol 2007; 57: 1331– 1335 [CrossRef] [PubMed]
    [Google Scholar]
  14. Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JP. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 2001; 51: 2037– 2048 [CrossRef] [PubMed]
    [Google Scholar]
  15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403– 410 [CrossRef] [PubMed]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  17. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  20. Rogers JS, Swofford DL. A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 1998; 47: 77– 89 [CrossRef] [PubMed]
    [Google Scholar]
  21. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  22. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  23. Willems A, Doignon-Bourcier F, Goris J, Coopman R, de Lajudie P et al. DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 2001; 51: 1315– 1322 [CrossRef] [PubMed]
    [Google Scholar]
  24. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  25. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45: 240– 245 [CrossRef] [PubMed]
    [Google Scholar]
  26. Mandel M, Mamur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12B: 195– 206 [Crossref]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002628
Loading
/content/journal/ijsem/10.1099/ijsem.0.002628
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error