1887

Abstract

A novel endophytic actinomycete, strain WPS1-2, isolated from a root of Globba winitii C. H. Wright, was characterized taxonomically by using a polyphasic approach. Strain WPS1-2 exhibited identical characteristics to the members of the genus Micromonospora . Single spores were observed directly on substrate mycelia. The cell-wall peptidoglycan of the strain contained meso-diaminopimelic acid and 3-OH-meso-diaminopimelic acid. Whole-cell hydrolysates contained glucose, ribose, arabinose and xylose. The predominant menaquinones were MK-10(H8) and MK-10(H10). The major cellular fatty acids consisted of iso-C15 : 0, iso-C16 : 0 and anteiso-C15 : 0. According to the 16S rRNA gene sequence of the strain, WPS1-2 showed highest similarity to Micromonospora costi CS1-12 (99.02 %). Phylogenetic analysis of the gyrase subunit B (gyrB) gene indicated that the strain was related to M. costi CS1-12. The DNA G+C content was 73.7 mol%. The strain could be distinguished from closely related type strains by using a combination of morphological, chemotaxonomic, physiological and biochemical data together with DNA–DNA relatedness values. Based on these observations, strain WPS1-2 is considered to represent a novel species of the genus Micromonospora , for which the name Micromonospora globbae sp. nov. is proposed. The type strain is WPS1-2 (=KCTC 39787=NBRC 112325=TISTR 2405).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002625
2018-02-09
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1073.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002625&mimeType=html&fmt=ahah

References

  1. Ørskov J. Investigations into the Morphology of the Ray Fungi Copenhagen: Levin and Munksgaard; 1923
    [Google Scholar]
  2. Genilloud O. Genus I Micromonospora Ørskov 1923, 156AL. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 5 NewYork: Springer; 2012; pp. 1039– 1057
    [Google Scholar]
  3. Tanasupawat S, Jongrungruangchok S, Kudo T. Micromonospora marina sp. nov., isolated from sea sand. Int J Syst Evol Microbiol 2010; 60: 648– 652 [CrossRef] [PubMed]
    [Google Scholar]
  4. Phongsopitanun W, Kudo T, Mori M, Shiomi K, Pittayakhajonwut P et al. Micromonospora fluostatini sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015; 65: 4417– 4423 [CrossRef] [PubMed]
    [Google Scholar]
  5. Supong K, Suriyachadkun C, Pittayakhajonwut P, Suwanborirux K, Thawai C. Micromonospora spongicola sp. nov., an actinomycete isolated from a marine sponge in the Gulf of Thailand. J Antibiot 2013; 66: 505– 509 [CrossRef] [PubMed]
    [Google Scholar]
  6. Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martínez-Molina E. Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 2006; 56: 2381– 2385 [CrossRef] [PubMed]
    [Google Scholar]
  7. Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P, Parinthawong N et al. Micromonospora oryzae sp. nov., isolated from roots of upland rice. Int J Syst Evol Microbiol 2015; 65: 3818– 3823 [CrossRef] [PubMed]
    [Google Scholar]
  8. Thawai C. Micromonospora costi sp. nov., isolated from a leaf of Costus speciosus. Int J Syst Evol Microbiol 2015; 65: 1456– 1461 [CrossRef] [PubMed]
    [Google Scholar]
  9. Bérdy J. Bioactive microbial metabolites. J Antibiot 2005; 58: 1– 26 [CrossRef] [PubMed]
    [Google Scholar]
  10. Zhao J, Guo L, Liu C, Zhang Y, Guan X et al. Micromonospora lycii sp. nov., a novel endophytic actinomycete isolated from wolfberry root (Lycium chinense Mill). J Antibiot 2016; 69: 153– 158 [CrossRef] [PubMed]
    [Google Scholar]
  11. Coombs JT, Franco CM. Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 2003; 69: 4260– 4262 [CrossRef] [PubMed]
    [Google Scholar]
  12. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY et al. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 2009; 75: 6176– 6186 [CrossRef] [PubMed]
    [Google Scholar]
  13. Küster E, Williams ST. Selection of media for the isolation of Streptomycetes. Nature 1964; 202: 928– 929 [CrossRef] [PubMed]
    [Google Scholar]
  14. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  15. Kelly KL. Inter-Society Color Council - National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  16. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  17. Williams ST, Cross T. Chapter XI Actinomycetes. Methods Microbiol 1971; 4: 295– 334 [Crossref]
    [Google Scholar]
  18. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28: 226– 231 [PubMed]
    [Google Scholar]
  19. Uchida K, Aida KO. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984; 30: 131– 134 [CrossRef]
    [Google Scholar]
  20. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia. J Bacteriol 1982; 151: 828– 837 [PubMed]
    [Google Scholar]
  21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  22. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  23. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  24. Raeder U, Broda P. Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1985; 1: 17– 20 [CrossRef]
    [Google Scholar]
  25. Suriyachadkun C, Chunhametha S, Thawai C, Tamura T, Potacharoen W et al. Planotetraspora thailandica sp. nov., isolated from soil in Thailand. Int J Syst Evol Microbiol 2009; 59: 992– 997 [CrossRef] [PubMed]
    [Google Scholar]
  26. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp. 115– 148
    [Google Scholar]
  27. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98 NT. Nucleic acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  28. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  29. Garcia LC, Martínez-Molina E, Trujillo ME. Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 2010; 60: 331– 337 [CrossRef] [PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  32. Fitch WM. Toward defining the course of evolution: minimum change for specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  33. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  36. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  37. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  38. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20: 435– 443 [CrossRef]
    [Google Scholar]
  39. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002625
Loading
/content/journal/ijsem/10.1099/ijsem.0.002625
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error