1887

Abstract

A cultivation-based study of the microbial diversity of cellular phone screens led to the isolation of a Gram-stain-positive, aerobic, rod-shaped and non-endospore-forming bacterium, designated S2T63, exhibiting phenotypic and genotypic characteristics unique to the type strains of closely related species. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain is a member of Microbacterium , and most closely related to Microbacterium aurantiacum IFO 15234 and Microbacterium kitamiense Kitami C2. The DNA–DNA relatedness values of the strain S2T63 to M. aurantiacum KACC 20510, M. kitamiense KACC 20514and Microbacterium laevaniformans KACC 14463 were 65 % (±4), 29.5 % (±3) and 55.9 % (±4), respectively. The genomic DNA G+C content was 71.8 mol%. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0, C16 : 0 and anteiso-C17 : 0. The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and two unidentified polar lipids. The peptidoglycan contained the amino acids glycine, lysine, alanine and glutamic acid, with substantial amounts of hydroxy glutamic acid detected, which is characteristic of peptidoglycan type B1α. The predominant menaquinones were MK-12 and MK-13. Rhamnose, fucose and galactose were the whole-cell sugars detected. The strain also showed biofilm production, estimated by using crystal violet assay. Based on the results of the phenotypic and genotypic characterizations, it was concluded that the new strain represents a novel species of the genus Microbacterium , for which the name Microbacteriumtelephonicum is proposed, with S2T63T (=MCC 2967=KACC 18715=LMG 29293) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002622
2018-02-09
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1052.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002622&mimeType=html&fmt=ahah

References

  1. Orla-Jensen S. The Lactic Acid Bacteria Høst, Copenhagen: 1919; pp. 1– 196
    [Google Scholar]
  2. Collins MD, Jones D, Kroppenstedt RM. Reclassification of Brevibacterium imperiale (Steinhaus) and "Corynebacterium laevaniformans" (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov. Syst Appl Microbiol 1983; 4: 65– 78 [CrossRef] [PubMed]
    [Google Scholar]
  3. Fidalgo C, Riesco R, Henriques I, Trujillo ME, Alves A. Microbacterium diaminobutyricum sp. nov., isolated from Halimione portulacoides, which contains diaminobutyric acid in its cell wall, and emended description of the genus Microbacterium. Int J Syst Evol Microbiol 2016; 66: 4492– 4500 [CrossRef] [PubMed]
    [Google Scholar]
  4. Mawlankar RR, Mual P, Sonalkar VV, Thorat MN, Verma A et al. Microbacterium enclense sp. nov., isolated from sediment sample. Int J Syst Evol Microbiol 2015; 65: 2064– 2070 [CrossRef] [PubMed]
    [Google Scholar]
  5. Nguyen NL, Kim YJ, Hoang VA, Min JW, Hwang KH et al. Microbacterium panaciterrae sp. nov., isolated from the rhizosphere of ginseng. Int J Syst Evol Microbiol 2015; 65: 927– 933 [CrossRef] [PubMed]
    [Google Scholar]
  6. Li Y, Wang T, Fang W, Xue H, Piao CG et al. Microbacterium populi sp. nov., isolated from Populus×euramericana bark. Int J Syst Evol Microbiol 2015; 65: 1444– 1449 [CrossRef] [PubMed]
    [Google Scholar]
  7. Alves A, Riesco R, Correia A, Trujillo ME. Microbacterium proteolyticum sp. nov. isolated from roots of Halimione portulacoides. Int J Syst Evol Microbiol 2015; 65: 1794– 1798 [CrossRef] [PubMed]
    [Google Scholar]
  8. Hoang VA, Kim YJ, Nguyen NL, Kang CH, Kang JP et al. Microbacterium rhizomatis sp. nov., a β-glucosidase-producing bacterium isolated from rhizome of Korean mountain ginseng. Int J Syst Evol Microbiol 2015; 65: 3196– 3202 [CrossRef] [PubMed]
    [Google Scholar]
  9. Peng S, Dongying L, Bingxin Y, Mingjun L, Gehong W. Microbacterium shaanxiense sp. nov., isolated from the nodule surface of soybean. Int J Syst Evol Microbiol 2015; 65: 1437– 1443 [CrossRef] [PubMed]
    [Google Scholar]
  10. Meng YC, Liu HC, Yang LL, Kang YQ, Zhou YG et al. Microbacterium sorbitolivorans sp. nov., a novel member of Microbacteriaceae isolated from fermentation bed in pigpen. Int J Syst Evol Microbiol 2016; 66: 5556– 5561 [CrossRef] [PubMed]
    [Google Scholar]
  11. Dastager SG, Lee JC, Ju YJ, Park DJ, Kim CJ. Microbacterium kribbense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2008; 58: 2536– 2540 [CrossRef] [PubMed]
    [Google Scholar]
  12. Lal D, Gupta SK, Schumann P, Lal R. Microbacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2010; 60: 2634– 2638 [CrossRef] [PubMed]
    [Google Scholar]
  13. Mondani L, Piette L, Christen R, Bachar D, Berthomieu C et al. Microbacterium lemovicicum sp. nov., a bacterium isolated from a natural uranium-rich soil. Int J Syst Evol Microbiol 2013; 63: 2600– 2606 [CrossRef] [PubMed]
    [Google Scholar]
  14. Gao M, Wang M, Zhang YC, Zou XL, Xie LQ et al. Microbacterium neimengense sp. nov., isolated from the rhizosphere of maize. Int J Syst Evol Microbiol 2013; 63: 236– 240 [CrossRef] [PubMed]
    [Google Scholar]
  15. Wu YH, Wu M, Wang CS, Wang XG, Yang JY et al. Microbacterium profundi sp. nov., isolated from deep-sea sediment of polymetallic nodule environments. Int J Syst Evol Microbiol 2008; 58: 2930– 2934 [CrossRef] [PubMed]
    [Google Scholar]
  16. Zhang L, Xi L, Ruan J, Huang Y. Microbacterium marinum sp. nov., isolated from deep-sea water. Syst Appl Microbiol 2012; 35: 81– 85 [CrossRef] [PubMed]
    [Google Scholar]
  17. Zlamala C, Schumann P, Kämpfer P, Valens M, Rosselló-Mora R et al. Microbacterium aerolatum sp. nov., isolated from the air in the 'Virgilkapelle' in Vienna. Int J Syst Evol Microbiol 2002; 52: 1229– 1234 [CrossRef] [PubMed]
    [Google Scholar]
  18. Clermont D, Diard S, Bouchier C, Vivier C, Bimet F et al. Microbacterium binotii sp. nov., isolated from human blood. Int J Syst Evol Microbiol 2009; 59: 1016– 1022 [CrossRef] [PubMed]
    [Google Scholar]
  19. Brennan NM, Brown R, Goodfellow M, Ward AC, Beresford TP et al. Microbacterium gubbeenense sp. nov., from the surface of a smear-ripened cheese. Int J Syst Evol Microbiol 2001; 51: 1969– 1976 [CrossRef] [PubMed]
    [Google Scholar]
  20. Bakir MA, Kudo T, Benno Y. Microbacterium hatanonis sp. nov., isolated as a contaminant of hairspray. Int J Syst Evol Microbiol 2008; 58: 654– 658 [CrossRef] [PubMed]
    [Google Scholar]
  21. Kim KK, Park HY, Park W, Kim IS, Lee ST. Microbacterium xylanilyticum sp. nov., a xylan-degrading bacterium isolated from a biofilm. Int J Syst Evol Microbiol 2005; 55: 2075– 2079 [CrossRef] [PubMed]
    [Google Scholar]
  22. Crous PW, Wingfield MJ, Le Roux JJ, Richardson DM, Strasberg D et al. Fungal planet description sheets: 371-399. Persoonia 2015; 35: 264– 327 [CrossRef] [PubMed]
    [Google Scholar]
  23. Rahi P, Kurli R, Khairnar M, Jagtap S, Pansare AN et al. Description of Lysinibacillus telephonicus sp. nov., isolated from the screen of a cellular phone. Int J Syst Evol Microbiol 2017; 67: 2289– 2295 [CrossRef] [PubMed]
    [Google Scholar]
  24. Meadow JF, Altrichter AE, Green JL. Mobile phones carry the personal microbiome of their owners. PeerJ 2014; 2: e447 [CrossRef] [PubMed]
    [Google Scholar]
  25. Peng JS, Tsai WC, Chou CC. Inactivation and removal of Bacillus cereus by sanitizer and detergent. Int J Food Microbiol 2002; 77: 11– 18 [CrossRef] [PubMed]
    [Google Scholar]
  26. Harrison JJ, Ceri H, Turner RJ. Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 2007; 5: 928– 938 [CrossRef] [PubMed]
    [Google Scholar]
  27. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3: 208– 218 [CrossRef]
    [Google Scholar]
  28. Gulati A, Rahi P, Vyas P. Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 2008; 56: 73– 79 [CrossRef] [PubMed]
    [Google Scholar]
  29. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  31. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 1992; 9: 678– 687 [CrossRef] [PubMed]
    [Google Scholar]
  32. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [CrossRef] [PubMed]
    [Google Scholar]
  33. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  34. Gillis M, de Ley J, de Cleene M. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 1970; 12: 143– 153 [CrossRef] [PubMed]
    [Google Scholar]
  35. Rossello-Mora R, Mercedes U, Lopez-Lopez A. DNA-DNA hybridization. In Fred R, Aharon O. (editors) Methods in Microbiology New York, NY: Academic Press; 2011; pp. 325– 347
    [Google Scholar]
  36. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: MIDI Inc; 1990
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  38. Schumann P. Peptidoglycan structure. In Fred R, Aharon O. (editors) Methods in Microbiology New York, NY: Academic Press; 2011; pp. 101– 129
    [Google Scholar]
  39. Tindall BJ. Fully saturated menaqionones in the archaebacterium Pyrobaculum islandicum. FEMS Microbiol Lett 1989; 60: 251– 254 [CrossRef]
    [Google Scholar]
  40. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28: 226 [PubMed]
    [Google Scholar]
  41. Leifson E. Atlas of Bacterial Flagellation London: Academic Press; 1960; [Crossref]
    [Google Scholar]
  42. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55: 1149– 1153 [CrossRef] [PubMed]
    [Google Scholar]
  43. Cha JO, Yoo JI, Yoo JS, Chung HS, Park SH et al. Investigation of biofilm formation and its association with the molecular and clinical characteristics of methicillin-resistant Staphylococcus aureus. Osong Public Health Res Perspect 2013; 4: 225– 232 [CrossRef] [PubMed]
    [Google Scholar]
  44. Otton LM, da Silva Campos M, Meneghetti KL, Corção G. Influence of twitching and swarming motilities on biofilm formation in Pseudomonas strains. Arch Microbiol 2017; 199: 677– 682 [CrossRef] [PubMed]
    [Google Scholar]
  45. Alves A, Correia A, Igual JM, Trujillo ME. Microbacterium endophyticum sp. nov. and Microbacterium halimionae sp. nov., endophytes isolated from the salt-marsh plant Halimione portulacoides and emended description of the genus Microbacterium. Syst Appl Microbiol 2014; 37: 474– 479 [CrossRef] [PubMed]
    [Google Scholar]
  46. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60: 249– 266 [CrossRef] [PubMed]
    [Google Scholar]
  47. Takeuchi M, Hatano K. Proposal of six new species in the genus Microbacterium and transfer of Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov. Int J Syst Bacteriol 1998; 48: 973– 982 [CrossRef] [PubMed]
    [Google Scholar]
  48. Matsuyama H, Kawasaki K, Yumoto I, Shida O. Microbacterium kitamiense sp. nov., a new polysaccharide-producing bacterium isolated from the wastewater of a sugar-beet factory. Int J Syst Bacteriol 1999; 49: 1353– 1357 [CrossRef] [PubMed]
    [Google Scholar]
  49. Yokota A, Takeuchi M, Weiss N. Proposal of two new species in the genus Microbacterium: Microbacterium dextranolyticum sp. nov. and Microbacterium aurum sp. nov. Int J Syst Bacteriol 1993; 43: 549– 554 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002622
Loading
/content/journal/ijsem/10.1099/ijsem.0.002622
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error