sp. nov., isolated from rhizosphere sand of a coastal sand dune plant Free

Abstract

A Gram-stain-negative, aerobic, non-endospore-forming organism, isolated from the rhizosphere sand of a coastal sand dune plant was studied for its taxonomic position. On the basis of 16S rRNA gene sequence similarity comparisons, strain YU-PRIM-29 was grouped within the genus and was most closely related to (97.5 %). The 16S rRNA gene sequence similarity to other species was <97.5 %. Strain YU-PRIM-29 grew optimally at 28 °C (growth range, 10–36 °C), at a pH of 7–9 (growth range, pH 5.5–12.0) and in the presence of 0.5 to 5 % (w/v) NaCl (growth up to 20 % NaCl). The fatty acid profile from whole-cell hydrolysates supported the allocation of the strain to the genus . The fatty acids Cω7 and C were found as major compounds, followed by the hydroxylated fatty acid C 3-OH. The quinone system consisted predominantly of ubiquinone Q-9. The polar lipid profile was composed of the major lipids diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. In the polyamine pattern, spermidine was the predominant compound. The DNA G+C content was 64.8 mol%. In addition, the results of physiological and biochemical tests also allowed phenotypic differentiation of strain YU-PRIM-29 from its closest-related species. Hence, YU-PRIM-29 represents a new species of the genus , for which we propose the name sp. nov., with YU-PRIM-29 (=LMG 28855=CCM 8737) as the type strain.

Keyword(s): Halomonas malpeensis and taxonomy
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002616
2018-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1037.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002616&mimeType=html&fmt=ahah

References

  1. Vreeland RH, Litchfield CD, Martin EL, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 1980; 30:485–495 [View Article]
    [Google Scholar]
  2. Franzmann PD, Wehmeyer U, Stackebrandt E. Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya . Syst Appl Microbiol 1988; 11:16–19 [View Article]
    [Google Scholar]
  3. Baumann L, Bowditch RD, Baumann P. Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus, A. pacificus, A. cupidus, A. venustus, and Pseudomonas marina . Int J Syst Bacteriol 1983; 33:793–802 [View Article]
    [Google Scholar]
  4. Dobson SJ, Franzmann PD. Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 1996; 46:550–558 [View Article]
    [Google Scholar]
  5. Fendrich C. Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid eubacterium from Great Salt Lake, Utah, USA. Syst Appl Microbiol 1988; 11:36–43 [View Article]
    [Google Scholar]
  6. Robinson J, Gibbons NE. The effect of salts on the growth of Micrococcus halodenitrificans n. sp. Canadian Journal of Botany 1952; 30:147–154 [View Article]
    [Google Scholar]
  7. Arahal DR, Ludwig W, Schleifer KH, Ventosa A. Phylogeny of the family Halomonadaceae based on 23S and 165 rDNA sequence analyses. Int J Syst Evol Microbiol 2002; 52:241–249 [View Article][PubMed]
    [Google Scholar]
  8. de La Haba RR, Arahal DR, Márquez MC, Ventosa A. Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. Int J Syst Evol Microbiol 2010; 60:737–748 [View Article][PubMed]
    [Google Scholar]
  9. de La Haba RR, Márquez MC, Papke RT, Ventosa A. Multilocus sequence analysis of the family Halomonadaceae . Int J Syst Evol Microbiol 2012; 62:520–538 [View Article][PubMed]
    [Google Scholar]
  10. Vreeland RH. Halomonas. Bergey's Manual of Systematics of Archaea and Bacteria 2015 pp. 1–19
    [Google Scholar]
  11. Quesada E, Bejar V, Calvo C. Exopolysaccharide production by Volcaniella eurihalina . Experientia 1993; 49:1037–1041 [View Article]
    [Google Scholar]
  12. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ et al. Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 2007; 57:2436–2446 [View Article][PubMed]
    [Google Scholar]
  13. Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  14. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467 [View Article][PubMed]
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics London: Wiley; 1990 pp. 115–175
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  17. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  18. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article][PubMed]
    [Google Scholar]
  19. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  21. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  22. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  23. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6 Distributed by the author Department of Genome Sciences, University of Washington, Seattle: 2005
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  25. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969 pp. 21–132 [Crossref]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  27. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci USA 1978; 75:4801–4805 [View Article][PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  29. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44:W22–W28 [View Article][PubMed]
    [Google Scholar]
  30. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  31. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [View Article][PubMed]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  33. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998; 48:179–186 [View Article][PubMed]
    [Google Scholar]
  34. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989; 8:151–156 [View Article]
    [Google Scholar]
  35. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [Crossref]
    [Google Scholar]
  36. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4:770–773[PubMed] [Crossref]
    [Google Scholar]
  37. Glaeser SP, Falsen E, Martin K, Kämpfer P. Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2013; 63:3623–3627 [View Article][PubMed]
    [Google Scholar]
  38. Kim KK, Lee KC, Oh HM, Lee JS. Halomonas stevensii sp. nov., Halomonas hamiltonii sp. nov. and Halomonas johnsoniae sp. nov., isolated from a renal care centre. Int J Syst Evol Microbiol 2010; 60:369–377 [View Article][PubMed]
    [Google Scholar]
  39. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  40. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47:698–708 [View Article]
    [Google Scholar]
  41. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  42. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  43. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  44. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article][PubMed]
    [Google Scholar]
  45. Hamana K, Sato W, Gouma K, Yu J, Ino Y et al. Cellular polyamine catalogues of the five classes of the phylum Proteobacteria: distributions of homospermidine within the class Alphaproteobacteria, hydroxyputrescine within the class Betaproteobacteria, norspermidine within the class Gammaproteobacteria, and spermidine within the classes Deltaproteobacteria and Epsilonproteobacteria . Ann Gunma Health Sci 2006; 27:1–16
    [Google Scholar]
  46. Gaboyer F, Vandenabeele-Trambouze O, Cao J, Ciobanu MC, Jebbar M et al. Physiological features of Halomonas lionensis sp. nov., a novel bacterium isolated from a Mediterranean Sea sediment. Res Microbiol 2014; 165:490–500 [View Article][PubMed]
    [Google Scholar]
  47. Jiang J, Pan Y, Hu S, Zhang X, Hu B et al. Halomonas songnenensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soils. Int J Syst Evol Microbiol 2014; 64:1662–1669 [View Article][PubMed]
    [Google Scholar]
  48. Wang T, Wei X, Xin Y, Zhuang J, Shan S et al. Halomonas lutescens sp. nov., a halophilic bacterium isolated from a lake sediment. Int J Syst Evol Microbiol 2016; 66:4697–4704 [View Article][PubMed]
    [Google Scholar]
  49. Franzmann PD, Tindall BJ. A chemotaxonomic study of members of the family Halomonadaceae . Syst Appl Microbiol 1990; 13:142–147 [View Article]
    [Google Scholar]
  50. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  51. Kämpfer P. Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae . Zentralbl Bakteriol 1990; 273:164–172 [View Article][PubMed]
    [Google Scholar]
  52. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article][PubMed]
    [Google Scholar]
  53. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [View Article][PubMed]
    [Google Scholar]
  54. Kaye JZ, Márquez MC, Ventosa A, Baross JA. Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 2004; 54:499–511 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002616
Loading
/content/journal/ijsem/10.1099/ijsem.0.002616
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed