1887

Abstract

Taxonomic studies were carried out on a carotenoid-producing strain, designated WV39, isolated from the faeces of Antarctic penguins. Cells of strain WV39 were Gram-stain-negative, strictly aerobic, yellow and rod-shaped. 16S rRNA gene sequence analysis revealed that strain WV39 was closely related to Flavobacterium qiangtangense JCM 19739 (96.3 % similarity), Flavobacterium noncentrifugens NBRC 108844 (95.5 %) and Flavobacterium aquatile LMG 4008 (94.9 %). The predominant cellular fatty acids were iso-C15 : 0, iso-C15 : 0 3-OH and summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1 ω7c). Menaquinone-6 was the sole quinone identified, and the major pigment was zeaxanthin. The major polar lipid was phosphatidylethanolamine. DNA–DNA relatedness of strain WV39 with respect to its closest phylogenetic neighbours was 41.8 % for F. qiangtangense JCM 19739, 25.5 % for F. aquatile LMG 4008 and 25.2 % for F. noncentrifugens NBRC 108844. The DNA G+C content of strain WV39 was 39.8 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain WV39 is concluded to represent a novel species of the genus Flavobacterium , for which the name Flavobacterium kingsejongi sp. nov. is proposed. The type strain is WV39 (=KCTC 42908=CECT 9085).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002610
2018-02-02
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/911.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002610&mimeType=html&fmt=ahah

References

  1. Bergey D, Harrison F, Breed R, Hammer B, Huntoon F et al. Genus III. Flavobacterium. In Breed RS. (editor) Bergey’s Manual of Determinative Bacteriology. Baltimore: Williams & Wilkins; 1957; pp. 309– 322
    [Google Scholar]
  2. Bernardet JF, Bowman JP. The genus Flavobacterium. In Dworkin M. (editor) The Prokaryotes: a Handbook on the Biology of Bacteria NY: Springer; 2006; pp. 481– 531
    [Google Scholar]
  3. Huang L, Zhou J, Li X, Peng Q, Lu H et al. Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. J Ind Microbiol Biotechnol 2013; 40: 113– 122 [CrossRef] [PubMed]
    [Google Scholar]
  4. Miyashita M, Fujimura S, Nakagawa Y, Nishizawa M, Tomizuka N et al. Flavobacterium algicola sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2010; 60: 344– 348 [CrossRef] [PubMed]
    [Google Scholar]
  5. Touchon M, Barbier P, Bernardet JF, Loux V, Vacherie B et al. Complete genome sequence of the fish pathogen Flavobacterium branchiophilum. Appl Environ Microbiol 2011; 77: 7656– 7662 [CrossRef] [PubMed]
    [Google Scholar]
  6. Kim JH, Choi BH, Jo M, Kim SC, Lee PC. Flavobacterium faecale sp. nov., an agarase-producing species isolated from stools of Antarctic penguins. Int J Syst Evol Microbiol 2014; 64: 2884– 2890 [CrossRef] [PubMed]
    [Google Scholar]
  7. Huang F, Zhang Y, Zhu Y, Wang P, Lu J et al. Flavobacterium qiangtangensis sp. nov., isolated from Qiangtang basin in Qinghai-Tibetan Plateau, China. Curr Microbiol 2014; 69: 234– 239 [CrossRef] [PubMed]
    [Google Scholar]
  8. Zhu L, Liu Q, Liu H, Zhang J, Dong X et al. Flavobacterium noncentrifugens sp. nov., a psychrotolerant bacterium isolated from glacier meltwater. Int J Syst Evol Microbiol 2013; 63: 2032– 2037 [CrossRef] [PubMed]
    [Google Scholar]
  9. Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. Int J Syst Evol Microbiol 1996; 46: 128– 148
    [Google Scholar]
  10. Thomson KS, McMeekin TA, Thomas CJ. Electron microscopic observations of Flavobacterium aquatile NCIB 8694 (= ATCC 11947) and Flavobacterium meningosepticum NCTC 10016 (= ATCC 13253). Int J Syst Bacteriol 1981; 31: 226– 231 [CrossRef]
    [Google Scholar]
  11. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  13. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  14. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 1992; 9: 678– 687 [CrossRef] [PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  17. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
    [Google Scholar]
  18. Reichenbach H, Kohl W, Böttger-Vetter A, Achenbach H. Flexirubin-type pigments in Flavobacterium. Arch Microbiol 1980; 126: 291– 293 [CrossRef]
    [Google Scholar]
  19. Kim SH, Lee PC. Functional expression and extension of staphylococcal staphyloxanthin biosynthetic pathway in Escherichia coli. J Biol Chem 2012; 287: 21575– 21583 [CrossRef] [PubMed]
    [Google Scholar]
  20. Kim SH, Park YH, Schmidt-Dannert C, Lee PC. Redesign, reconstruction, and directed extension of the Brevibacterium linens C40 carotenoid pathway in Escherichia coli. Appl Environ Microbiol 2010; 76: 5199– 5206 [CrossRef] [PubMed]
    [Google Scholar]
  21. Heo J, Kim SH, Lee PC. New insight into the cleavage reaction of Nostoc sp. strain PCC 7120 carotenoid cleavage dioxygenase in natural and nonnatural carotenoids. Appl Environ Microbiol 2013; 79: 3336– 3345 [CrossRef] [PubMed]
    [Google Scholar]
  22. Asker D, Beppu T, Ueda K. Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst Appl Microbiol 2007; 30: 291– 296 [CrossRef] [PubMed]
    [Google Scholar]
  23. Hameed A, Shahina M, Lin SY, Cho JC, Lai WA et al. Kordia aquimaris sp. nov., a zeaxanthin-producing member of the family Flavobacteriaceae isolated from surface seawater, and emended description of the genus Kordia. Int J Syst Evol Microbiol 2013; 63: 4790– 4796 [CrossRef] [PubMed]
    [Google Scholar]
  24. Hameed A, Shahina M, Lin SY, Lai WA, Hsu YH et al. Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter. Int J Syst Evol Microbiol 2014; 64: 138– 145 [CrossRef] [PubMed]
    [Google Scholar]
  25. McCammon SA, Bowman JP. Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 2000; 50: 1055– 1063 [CrossRef] [PubMed]
    [Google Scholar]
  26. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911– 917 [CrossRef]
    [Google Scholar]
  27. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  28. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  29. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27: 104– 117 [CrossRef]
    [Google Scholar]
  30. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a New Genus of the Order Actinomycetales. Int J Syst Bacteriol 1993; 43: 805– 812 [CrossRef]
    [Google Scholar]
  31. Sheu SY, Lin YS, Chen WM. Flavobacterium squillarum sp. nov., isolated from a freshwater shrimp culture pond, and emended descriptions of Flavobacterium haoranii, Flavobacterium cauense, Flavobacterium terrae and Flavobacterium aquatile. Int J Syst Evol Microbiol 2013; 63: 2239– 2247 [CrossRef] [PubMed]
    [Google Scholar]
  32. Kong MK, Lee PC. Metabolic engineering of menaquinone-8 pathway of Escherichia coli as a microbial platform for vitamin K production. Biotechnol Bioeng 2011; 108: 1997– 2002 [CrossRef] [PubMed]
    [Google Scholar]
  33. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  34. McInnes JL, Forster AC, Skingle DC, Symons RH. Preparation and uses of photobiotin. Methods Enzymol 1990; 184: 588– 600 [PubMed] [Crossref]
    [Google Scholar]
  35. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000; 50: 1095– 1102 [CrossRef] [PubMed]
    [Google Scholar]
  36. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth- promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013; 63: 4386– 4395 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002610
Loading
/content/journal/ijsem/10.1099/ijsem.0.002610
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error