1887

Abstract

A strictly aerobic, Gram-stain-negative, rod-shaped, motile by gliding and yellow-orange pigmented flavobacterium, designated strain 9Alg 151, was isolated from the Pacific red alga Tichocarpus crinitus. Phylogenetic analysis based on 16S rRNA gene sequences showed that the novel strain fell into the genus Aquimarina of the family Flavobacteriaceae with a 16S rRNA gene sequence similarity range of 94.2–98.2 % to the recognized species of the genus. Strain 9Alg 151 grew in the presence of 0.5–5 % NaCl and at 5–34 °C, and hydrolysed aesculin, agar, gelatin, starch, Tween 40, DNA and chitin. The predominant fatty acids were iso-C17 : 0 3-OH, iso-C15 : 0, iso-C15 : 1 G, iso-C15 : 0 3-OH, iso-C16 : 0, iso-C17 : 1ω8c and summed feature 3. The polar lipid profile comprised phosphatidylethanolamine, three unidentified aminolipids and three unidentified lipids. The major respiratory quinone was MK-6. The genomic DNA G+C content was 32.6 mol%. On the basis of 16S rRNA gene sequence data, and chemotaxonomic and phenotypic characteristics, strain 9Alg 151 represents a novel species of the genus Aquimarina , for which the name Aquimarina algiphila sp. nov. is proposed. The type strain is 9Alg 151 (=KCTC 23622=KMM 6462).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002606
2018-01-29
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/892.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002606&mimeType=html&fmt=ahah

References

  1. Nedashkovskaya OI, Kim SB, Lysenko AM, Frolova GM, Mikhailov VV et al. Description of Aquimarina muelleri gen. nov., sp. nov., and proposal of the reclassification of [Cytophaga] latercula Lewin 1969 as Stanierella latercula gen. nov., comb. nov. Int J Syst Evol Microbiol 2005; 55: 225– 229 [CrossRef] [PubMed]
    [Google Scholar]
  2. Nedashkovskaya OI, Vancanneyt M, Christiaens L, Kalinovskaya NI, Mikhailov VV et al. Aquimarina intermedia sp. nov., reclassification of Stanierella latercula (Lewin 1969) as Aquimarina latercula comb. nov. and Gaetbulimicrobium brevivitae Yoon et al. 2006 as Aquimarina brevivitae comb. nov. and emended description of the genus Aquimarina. Int J Syst Evol Microbiol 2006; 56: 2037– 2041 [CrossRef] [PubMed]
    [Google Scholar]
  3. Lee JK, Cha IT, Kim M, Choi BG, Song HS et al. Aquimarina versatilis sp. nov., isolated from seashore sand, and emended description of the genus Aquimarina. Int J Syst Evol Microbiol 2017; 67: 411– 416 [CrossRef] [PubMed]
    [Google Scholar]
  4. Yi H, Chun J. Aquimarina addita sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61: 2445– 2449 [CrossRef] [PubMed]
    [Google Scholar]
  5. Wang Y, Ming H, Guo W, Chen H, Zhou C. Aquimarina aggregata sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66: 3406– 3412 [CrossRef] [PubMed]
    [Google Scholar]
  6. Li G, Lai Q, Sun F, Liu X, Xie Y et al. Aquimarina atlantica sp. nov., isolated from surface seawater of the Atlantic Ocean. Antonie van Leeuwenhoek 2014; 106: 293– 300 [CrossRef] [PubMed]
    [Google Scholar]
  7. Yu T, Yin Q, Song X, Zhao R, Shi X et al. Aquimarina longa sp. nov., isolated from seawater, and emended description of Aquimarina muelleri. Int J Syst Evol Microbiol 2013; 63: 1235– 1240 [CrossRef] [PubMed]
    [Google Scholar]
  8. Yu T, Zhang Z, Fan X, Shi X, Zhang XH. Aquimarina megaterium sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64: 122– 127 [CrossRef] [PubMed]
    [Google Scholar]
  9. Zhang Z, Yu T, Xu T, Zhang XH. Aquimarina pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64: 1991– 1997 [CrossRef] [PubMed]
    [Google Scholar]
  10. Oh Y, Choi BG, Kim JY, Roh SW, Lee SJ. Aquimarina seongsanensis sp. nov., isolated from sea water. Antonie van Leeuwenhoek 2017; 110: 1019– 1025 [CrossRef] [PubMed]
    [Google Scholar]
  11. Yoon JH, Kang SJ, Jung SY, Oh HW, Oh TK. Gaetbulimicrobium brevivitae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2006; 56: 115– 119 [CrossRef] [PubMed]
    [Google Scholar]
  12. Miyazaki M, Nagano Y, Fujiwara Y, Hatada Y, Nogi Y. Aquimarina macrocephali sp. nov., isolated from sediment adjacent to sperm whale carcasses. Int J Syst Evol Microbiol 2010; 60: 2298– 2302 [CrossRef] [PubMed]
    [Google Scholar]
  13. Han JR, Fang DB, Xia HF, Chen GJ, Du ZJ. Aquimarina rubra sp. nov., isolated from sediment of a sea cucumber culture pond. Int J Syst Evol Microbiol 2017; 67: 1932– 1936 [CrossRef] [PubMed]
    [Google Scholar]
  14. Chen WM, Sheu FS, Sheu SY. Aquimarina salinaria sp. nov., a novel algicidal bacterium isolated from a saltpan. Arch Microbiol 2012; 194: 103– 112 [CrossRef] [PubMed]
    [Google Scholar]
  15. Lewin RA. A classification of flexibacteria. J Gen Microbiol 1969; 58: 189– 206 [CrossRef] [PubMed]
    [Google Scholar]
  16. Yoon BJ, You HS, Lee DH, Oh DC, Dc O. Aquimarina spongiae sp. nov., isolated from marine sponge Halichondria oshoro. Int J Syst Evol Microbiol 2011; 61: 417– 421 [CrossRef] [PubMed]
    [Google Scholar]
  17. Park SC, Choe HN, Baik KS, Seong CN. Aquimarina gracilis sp. nov., isolated from the gut microflora of a mussel, Mytilus coruscus, and emended description of Aquimarina spongiae. Int J Syst Evol Microbiol 2013; 63: 1782– 1787 [CrossRef] [PubMed]
    [Google Scholar]
  18. Park SC, Choe HN, Baik KS, Seong CN. Aquimarina mytili sp. nov., isolated from the gut microflora of a mussel, Mytilus coruscus, and emended description of Aquimarina macrocephali. Int J Syst Evol Microbiol 2012; 62: 1974– 1979 [CrossRef] [PubMed]
    [Google Scholar]
  19. Zheng Y, Wang Y, Liu Y, Li W, Yu M et al. Aquimarina hainanensis sp. nov., isolated from diseased Pacific white shrimp Litopenaeus vannamei larvae. Int J Syst Evol Microbiol 2016; 66: 70– 75 [CrossRef] [PubMed]
    [Google Scholar]
  20. Li X, Wang L, Huang H, Lai Q, Shao Z. Aquimarina penaei sp. nov., isolated from intestinal tract contents of Pacific white shrimp, Penaeus vannamei. Antonie van Leeuwenhoek 2014; 106: 1223– 1229 [CrossRef] [PubMed]
    [Google Scholar]
  21. Lin B, Lu G, Zheng Y, Xie W, Li S et al. Aquimarina agarilytica sp. nov., an agarolytic species isolated from a red alga. Int J Syst Evol Microbiol 2012; 62: 869– 873 [CrossRef] [PubMed]
    [Google Scholar]
  22. Zhou YX, Wang C, Du ZJ, Chen GJ. Aquimarina agarivorans sp. nov., a genome-sequenced member of the class Flavobacteriia isolated from Gelidium amansii. Int J Syst Evol Microbiol 2015; 65: 2684– 2688 [CrossRef] [PubMed]
    [Google Scholar]
  23. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV, Kim SJ, Rhee SK et al. Winogradskyella litoriviva sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2015; 65: 3652– 3657 [CrossRef] [PubMed]
    [Google Scholar]
  24. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8: 87– 91 [CrossRef]
    [Google Scholar]
  25. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, with Methods and Digests of Generic Characteristics, 2nd ed. Baltimore: Williams & Wilkins Co; 1967
    [Google Scholar]
  26. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50: 1861– 1868 [CrossRef] [PubMed]
    [Google Scholar]
  27. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20: 1– 6
    [Google Scholar]
  28. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911– 917 [CrossRef] [PubMed]
    [Google Scholar]
  29. Collins MD, Shah HM. Fatty acid, menaquinone and polar lipid composition of Rothia dentosacariosa. Arch Microbiol 1984; 37: 247– 249 [Crossref]
    [Google Scholar]
  30. Komagata K, Suzuki KI. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  31. Nedashkovskaya OI, Kim SB, Lysenko AM, Frolova GM, Mikhailov VV et al. Bizionia paragorgiae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the soft coral Paragorgia arborea. Int J Syst Evol Microbiol 2005; 55: 375– 378 [CrossRef] [PubMed]
    [Google Scholar]
  32. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3: 208– 218 [CrossRef]
    [Google Scholar]
  33. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5: 109– 118 [CrossRef] [PubMed]
    [Google Scholar]
  34. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  35. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  36. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  37. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  38. Felsenstein J. PHYLIP (Phylogenetic Inference Package), Version 3.5c Seattle, USA: Department of Genetic, University of Washington; 1993
    [Google Scholar]
  39. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  40. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  41. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  42. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
    [Google Scholar]
  43. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33: 152– 155
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002606
Loading
/content/journal/ijsem/10.1099/ijsem.0.002606
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error