1887

Abstract

A Gram-stain-negative, aerobic, non-motile, non-spore-forming and rod-shaped bacterium, designated YHM-9, was isolated from soil in Yangquan, Shanxi Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YHM-9 belonged to the genus and shared the highest similarity (97.4 %) to the type strain W-WS13. Strain YHM-9 exhibited low DNA–DNA relatedness with W-WS13 (21.7±1.3 %). The DNA G+C content was 38.9 mol%. The major fatty acids were iso-C, summed feature 3 (Cω7 and/or Cω6) and iso-C 3-OH. The respiratory quinone was MK-7, the major polyamine was -homospermidine and the major polar lipids were phosphatidylethanolamine. Based on the morphological, physiological, biochemical and chemotaxonomic characteristics, strain YHM-9 was recognized as a representative of a novel species within the genus , for which the name sp. nov. is proposed. The type strain is YHM-9 (=JCM 32093=CCTCC AB 2017125).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002604
2018-03-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/886.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002604&mimeType=html&fmt=ahah

References

  1. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998;48:165–177 [CrossRef][PubMed]
    [Google Scholar]
  2. Qiu X, Qu Z, Jiang F, Ren L, Chang X et al. Pedobacter huanghensis sp. nov. and Pedobacter glacialis sp. nov., isolated from Arctic glacier foreland. Int J Syst Evol Microbiol 2014;64:2431–2436 [CrossRef][PubMed]
    [Google Scholar]
  3. Derichs J, Kämpfer P, Lipski A. Pedobacter nutrimenti sp. nov., isolated from chilled food. Int J Syst Evol Microbiol 2014;64:1310–1316 [CrossRef][PubMed]
    [Google Scholar]
  4. Farfán M, Montes MJ, Marqués AM. Reclassification of Sphingobacterium antarcticum Shivaji et al. 1992 as Pedobacter antarcticus comb. nov. and Pedobacter piscium (Takeuchi and Yokota 1993) Steyn et al. 1998 as a later heterotypic synonym of Pedobacter antarcticus. Int J Syst Evol Microbiol 2014;64:863–868 [CrossRef][PubMed]
    [Google Scholar]
  5. Margesin R, Spröer C, Schumann P, Schinner F. Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 2003;53:1291–1296 [CrossRef][PubMed]
    [Google Scholar]
  6. Vanparys B, Heylen K, Lebbe L, de Vos P. Pedobacter caeni sp. nov., a novel species isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 2005;55:1315–1318 [CrossRef][PubMed]
    [Google Scholar]
  7. Baik KS, Park YD, Kim MS, Park SC, Moon EY et al. Pedobacter koreensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2007;57:2079–2083 [CrossRef][PubMed]
    [Google Scholar]
  8. Muurholm S, Cousin S, Päuker O, Brambilla E, Stackebrandt E. Pedobacter duraquae sp. nov., Pedobacter westerhofensis sp. nov., Pedobacter metabolipauper sp. nov., Pedobacter hartonius sp. nov. and Pedobacter steynii sp. nov., isolated from a hard-water rivulet. Int J Syst Evol Microbiol 2007;57:2221–2227 [CrossRef][PubMed]
    [Google Scholar]
  9. Gordon NS, Valenzuela A, Adams SM, Ramsey PW, Pollock JL et al. Pedobacter nyackensis sp. nov., Pedobacter alluvionis sp. nov. and Pedobacter borealis sp. nov., isolated from Montana flood-plain sediment and forest soil. Int J Syst Evol Microbiol 2009;59:1720–1726 [CrossRef][PubMed]
    [Google Scholar]
  10. Lee HG, Kim SG, Im WT, Oh HM, Lee ST. Pedobacter composti sp. nov., isolated from compost. Int J Syst Evol Microbiol 2009;59:345–349 [CrossRef][PubMed]
    [Google Scholar]
  11. Zhou Z, Jiang F, Wang S, Peng F, Dai J et al. Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil, and emended descriptions of the genus Pedobacter, Pedobacter heparinus, Pedobacter daechungensis, Pedobacter terricola, Pedobacter glucosidilyticus and Pedobacter lentus. Int J Syst Evol Microbiol 2012;62:1963–1969 [CrossRef][PubMed]
    [Google Scholar]
  12. Park S, Park JM, Jung YT, Won SM, Yoon JH et al. Pedobacter lignilitoris sp. nov., isolated from wood falls. Int J Syst Evol Microbiol 2015;65:3481–3486 [CrossRef][PubMed]
    [Google Scholar]
  13. Yoon JH, Kang SJ, Park S, Oh TK. Pedobacter lentus sp. nov. and Pedobacter terricola sp. nov., isolated from soil. Int J Syst Evol Microbiol 2007;57:2089–2095 [CrossRef][PubMed]
    [Google Scholar]
  14. Švec P, Králová S, Busse HJ, Kleinhagauer T, Kýrová K et al. Pedobacter psychrophilus sp. nov., isolated from fragmentary rock. Int J Syst Evol Microbiol 2017;67:2538–2543 [CrossRef][PubMed]
    [Google Scholar]
  15. Trinh H, Yi TH. Pedobacter humi sp. nov., isolated from a playground soil. Int J Syst Evol Microbiol 2016;66:2382–2388 [CrossRef][PubMed]
    [Google Scholar]
  16. Kook M, Park Y, Yi TH. Pedobacter jejuensis sp. nov., isolated from soil of a pine grove, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 2014;64:1789–1794 [CrossRef][PubMed]
    [Google Scholar]
  17. Kang H, Kim H, Joung Y, Joh K. Pedobacter rivuli sp. nov., isolated from a freshwater stream. Int J Syst Evol Microbiol 2014;64:4073–4078 [CrossRef][PubMed]
    [Google Scholar]
  18. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  19. Lane DL. 16S/23S rRNA sequencing. In Stackebrandt ER, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester, United Kingdom: Wiley; 1991; pp.115–175
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  27. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.19–33
    [Google Scholar]
  28. Sun LN, Zhang J, Gong FF, Wang X, Hu G et al. Nocardioides soli sp. nov., a carbendazim-degrading bacterium isolated from soil under the long-term application of carbendazim. Int J Syst Evol Microbiol 2014;64:2047–2052 [CrossRef][PubMed]
    [Google Scholar]
  29. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001;51:1639–1652 [CrossRef][PubMed]
    [Google Scholar]
  30. Ebersole LL. Acid-fast stain procedures. In Isenberg HD. (editor) Clinical Microbiology Procedures Handbook Washington, DC: American Society for Microbiology; 1992; pp.3.5.1–3.5.3
    [Google Scholar]
  31. Breznak JA, Costilow RN. Physicochemical factors in growth. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.137–154
    [Google Scholar]
  32. Zhang H, Cheng MG, Sun B, Guo SH, Song M et al. Flavobacterium suzhouense sp. nov., isolated from farmland river sludge. Int J Syst Evol Microbiol 2015;65:370–374 [CrossRef][PubMed]
    [Google Scholar]
  33. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  34. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  35. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  36. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996;46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  37. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  38. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newslett 1990;20:1–6
    [Google Scholar]
  39. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high- performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  40. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002604
Loading
/content/journal/ijsem/10.1099/ijsem.0.002604
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error