1887

Abstract

A Gram-stain-positive, aerobic, endospore-forming bacterium isolated from a coolant lubricant was studied for its taxonomic allocation. On the basis of 16S rRNA gene sequences, strain KSS164-79 shared highest similarity (92.3–92.4 %) to type strains of the species , and In phylogenetic trees based on the 16S rRNA gene, strain KSS164-79 always formed a distinct cluster with the type strain of The fatty acid profile supported the grouping of the strain to the genus As major fatty acids, anteiso-C, iso-C and iso-C were detected. The polar lipid profile contained the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and two unidentified glycolipids. The major quinone was menaquinone MK-7. In addition, physiological and biochemical test results allowed the clear phenotypic differentiation of strain KSS164-79 from Hence, KSS164-79 represents a novel species of the genus , for which the name sp. nov. is proposed, with KSS164-79 (=DSM 104943=LMG 30062=CCM 8749=CIP 111345) as the type strain.

Keyword(s): lubricantis , Marinicrinis and taxonomy
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002603
2018-04-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1018.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002603&mimeType=html&fmt=ahah

References

  1. Guo LY, Xia J, Ling SK, Chen GJ, Du ZJ. Marinicrinis sediminis gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016;66:3725–3730 [CrossRef][PubMed]
    [Google Scholar]
  2. De Vos P, Ludwig W, Schleifer KH, Whitman WB. Family IV. Paenibacillaceae fam. nov. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 New York: Springer; 2009; pp.269–280
    [Google Scholar]
  3. Touzel JP, Prensier G. Genus VII Thermobacillus. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 New York: Springer; 2009; pp.321–322
    [Google Scholar]
  4. Mayilraj S, Stackebrandt E. The family Paenibacillaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes, 4th ed. Berlin: Springer; 2014; pp.267–280
    [Google Scholar]
  5. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.125–175
    [Google Scholar]
  6. Coloqhoun JA. Discovery of Deep-Sea Actinomycetes PhD Dissertation School of Biosciences; University of Kent, Canterbury: 1997
    [Google Scholar]
  7. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  8. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978;75:4801–4805 [CrossRef][PubMed]
    [Google Scholar]
  9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  10. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  11. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  12. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  13. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  14. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6 Distributed by the author Department of Genome Sciences, University of Washington, Seattle; 2005
    [Google Scholar]
  15. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[Crossref]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  17. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[PubMed][Crossref]
    [Google Scholar]
  18. Glaeser SP, Falsen E, Martin K, Kämpfer P. Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2013;63:3623–3627 [CrossRef][PubMed]
    [Google Scholar]
  19. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989;8:151–156 [CrossRef]
    [Google Scholar]
  20. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  21. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991;21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  22. Kämpfer P. Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralbl Bakteriol 1990;273:164–172 [CrossRef][PubMed]
    [Google Scholar]
  23. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  24. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  25. Tindall BJ. A Comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  26. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  27. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
  28. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002603
Loading
/content/journal/ijsem/10.1099/ijsem.0.002603
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error