1887

Abstract

A taxonomic study was carried out on strain 3PC125-7, which was isolated from the deep sea water of the Indian Ocean. The bacterium was rod-shaped, non-flagellated, Gram-stain-negative, oxidase- and catalase-positive and strictly aerobic. Optimal growth was observed at 25–37 °C, at pH 7 and in 1–3 % (w/v) NaCl. On the basis of the results of 16S rRNA gene sequence analysis, strain 3PC125-7 represents a member of the genus Muricauda , with the highest sequence similarity to Muricauda olearia CL-SS4 (96.7 %), followed by Muricauda marina H19-56 (96.7 %) and nine other species of the genus Muricauda (93.5–95.8 %). The principal fatty acids of 3PC125-7 were iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1G and the sole respiratory quinone was menaquinone-6. The polar lipids comprise phosphatidylethanolamine, six unidentified phospholipids and three unknown lipids. The genomic DNA G+C content of 3PC125-7 was 41.8 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic data obtained in this study, strain 3PC125-7 is considered to represent a novel species in the genus Muricauda , for which the name Muricauda indica sp. nov. is proposed, with the type strain 3PC125-7 (=MCCC 1A03198=KCTC 52318).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002602
2018-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/881.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002602&mimeType=html&fmt=ahah

References

  1. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  2. Yoon JH, Lee MH, Oh TK, Park YH. Muricauda flavescens sp. nov. and Muricauda aquimarina sp. nov., isolated from a salt lake near Hwajinpo Beach of the East Sea in Korea, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2005;55:1015–1019 [CrossRef][PubMed]
    [Google Scholar]
  3. Yoon JH, Kang SJ, Jung YT, Oh TK. Muricauda lutimaris sp. nov., isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 2008;58:1603–1607 [CrossRef][PubMed]
    [Google Scholar]
  4. Arun AB, Chen WM, Lai WA, Chao JH, Rekha PD et al. Muricauda lutaonensis sp. nov., a moderate thermophile isolated from a coastal hot spring. Int J Syst Evol Microbiol 2009;59:2738–2742 [CrossRef][PubMed]
    [Google Scholar]
  5. Hwang CY, Kim MH, Bae GD, Zhang GI, Kim YH et al. Muricauda olearia sp. nov., isolated from crude-oil-contaminated seawater, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2009;59:1856–1861 [CrossRef][PubMed]
    [Google Scholar]
  6. Lee SY, Park S, Oh TK, Yoon JH. Muricauda beolgyonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2012;62:1134–1139 [CrossRef][PubMed]
    [Google Scholar]
  7. Yang C, Li Y, Guo Q, Lai Q, Wei J et al. Muricauda zhangzhouensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2013;63:2320–2325 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim JM, Jin HM, Jeon CO. Muricauda taeanensis sp. nov., isolated from a marine tidal flat. Int J Syst Evol Microbiol 2013;63:2672–2677 [CrossRef][PubMed]
    [Google Scholar]
  9. Wu YH, Yu PS, Zhou YD, Xu L, Wang CS et al. Muricauda antarctica sp. nov., a marine member of the Flavobacteriaceae isolated from Antarctic seawater. Int J Syst Evol Microbiol 2013;63:3451–3456 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhang Z, Gao X, Qiao Y, Wang Y, Zhang XH. Muricauda pacifica sp. nov., isolated from seawater of the South Pacific Gyre. Int J Syst Evol Microbiol 2015;65:4087–4092 [CrossRef][PubMed]
    [Google Scholar]
  11. Wang Y, Yang X, Liu J, Wu Y, Zhang XH. Muricauda lutea sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2017;67:1064–1069 [CrossRef][PubMed]
    [Google Scholar]
  12. Su Y, Yang X, Wang Y, Liu Y, Ren Q et al. Muricauda marina sp. nov., isolated from marine snow of Yellow Sea. Int J Syst Evol Microbiol 2017;67:2446–2451 [CrossRef][PubMed]
    [Google Scholar]
  13. Lai Q, Yuan J, Wu C, Shao Z. Oceanibaculum indicum gen. nov., sp. nov., isolated from deep seawater of the Indian Ocean. Int J Syst Evol Microbiol 2009;59:1733–1737 [CrossRef][PubMed]
    [Google Scholar]
  14. Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 2005;55:1181–1186 [CrossRef][PubMed]
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  19. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993;10:1073–1095 [CrossRef][PubMed]
    [Google Scholar]
  20. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  21. Liu Y, Lai Q, Du J, Shao Z. Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. Int J Syst Evol Microbiol 2016;66:1193–1199 [CrossRef][PubMed]
    [Google Scholar]
  22. Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 1989;479:297–306 [CrossRef][PubMed]
    [Google Scholar]
  23. Athalye M, Noble WC, Minnikin DE. Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Bacteriol 1985;58:507–512 [CrossRef][PubMed]
    [Google Scholar]
  24. Collins MD, Costas M, Owen RJ. Isoprenoid quinone composition of representatives of the genus Campylobacter. Arch Microbiol 1984;137:168–170 [CrossRef][PubMed]
    [Google Scholar]
  25. Kates M. Techniques of lipidology: isolation, analysis and identification of lipids. In Laboratory Techniques in Biochemistry & Molecular Biologyvol. 3 Amsterdam: Elsevier; 1972.;0151–0155
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002602
Loading
/content/journal/ijsem/10.1099/ijsem.0.002602
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error