1887

Abstract

An anaerobic sulfate-reducing micro-organism, strain 3408-1, was isolated from a terrestrial hot spring in Kamchatka peninsula (Russia). The cells were spore-forming rods with a Gram-positive type of cell wall. The new isolate was a moderately thermoacidophilic anaerobe able to grow either by sulfate or thiosulfate respiration with H2 or formate as substrates, or by fermenting yeast extract, maltose, sucrose, glucose and pyruvate. The fermentation products were acetate, CO2 and H2. The pH range for growth was 2.9–6.5, with an optimum at 4.5. The temperature range for growth was 42–70 °C, with an optimum at 55 °C. The G+C content of DNA was 58 mol%. Phylogenetic analysis of the 16S rRNA gene showed that strain 3408-1 belongs to the family Thermoanaerobacteraceae , order Thermoanaerobacterales and was distantly related to the species of the genus Ammonifex (93–94 % sequence similarity). On the basis of physiological properties and results of phylogenetic analysis, strain 3408-1 is considered to represent a novel species of a new genus, for which the name Desulfothermobacter acidiphilus gen. nov., sp. nov. is proposed. The type strain is 3408-1 (=DSM 105356=VKM B-3183).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002599
2018-01-25
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/871.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002599&mimeType=html&fmt=ahah

References

  1. Muyzer G, Stams AJ. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 2008;6:441–454 [CrossRef][PubMed]
    [Google Scholar]
  2. Mori K, Kim H, Kakegawa T, Hanada S. A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 2003;7:283–290 [CrossRef][PubMed]
    [Google Scholar]
  3. Frolov EN, Kublanov IV, Toshchakov SV, Samarov NI, Novikov AA et al. Thermodesulfobium acidiphilum sp. nov., a thermoacidophilic, sulfate-reducing, chemoautotrophic bacterium from a thermal site. Int J Syst Evol Microbiol 2017;67:1482–1485 [CrossRef][PubMed]
    [Google Scholar]
  4. Itoh T, Suzuki K, Sanchez PC, Nakase T. Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 1999;49:1157–1163 [CrossRef][PubMed]
    [Google Scholar]
  5. Siebers B, Zaparty M, Raddatz G, Tjaden B, Albers SV et al. The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota. PLoS One 2011;6:e24222 [CrossRef][PubMed]
    [Google Scholar]
  6. Gumerov VM, Mardanov AV, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA et al. Complete genome sequence of "Vulcanisaeta moutnovskia" strain 768-28, a novel member of the hyperthermophilic crenarchaeal genus Vulcanisaeta. J Bacteriol 2011;193:2355–2356 [CrossRef][PubMed]
    [Google Scholar]
  7. Frolov EN, Merkel AY, Pimenov NV, Khvashevskaya AA, Bonch-Osmolovskaya EA et al. Sulfate reduction and inorganic carbon assimilation in acidic thermal springs of the Kamchatka Peninsula. Mikrobiologiia 2016;85:471–480 [CrossRef][PubMed]
    [Google Scholar]
  8. Kevbrin VV, Zavarzin GA. Effect of sulfur compounds on the growth of the halophilic homoacetogenic bacterium Acetohalobium arabaticum. Microbiology 1992;61:563–567
    [Google Scholar]
  9. Wolin EA, Wolin MJ, Wolfe RS. Formation of methane by bacterial extracts. J Biol Chem 1963;238:2882–2888[PubMed]
    [Google Scholar]
  10. Trueper HG, Schlegel HG. Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 1964;30:225–238 [CrossRef][PubMed]
    [Google Scholar]
  11. Slobodkina GB, Panteleeva AN, Kostrikina NA, Kopitsyn DS, Bonch-Osmolovskaya EA et al. Tepidibacillus fermentans gen. nov., sp. nov.: a moderately thermophilic anaerobic and microaerophilic bacterium from an underground gas storage. Extremophiles 2013;17:833–839 [CrossRef][PubMed]
    [Google Scholar]
  12. Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 1951;62:293–300[PubMed]
    [Google Scholar]
  13. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  14. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  15. Perevalova AA, Kublanov IV, Baslerov RV, Zhang G, Bonch-Osmolovskaya EA. Brockia lithotrophica gen. nov., sp. nov., an anaerobic thermophilic bacterium from a terrestrial hot spring. Int J Syst Evol Microbiol 2013;63:479–483 [CrossRef][PubMed]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  17. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  20. Huber R, Rossnagel P, Woese CR, Rachel R, Langworthy TA et al. Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Syst Appl Microbiol 1996;19:40–49 [CrossRef][PubMed]
    [Google Scholar]
  21. Miroshnichenko ML, Tourova TP, Kolganova TV, Kostrikina NA, Chernych N et al. Ammonifex thiophilus sp. nov., a hyperthermophilic anaerobic bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 2008;58:2935–2938 [CrossRef][PubMed]
    [Google Scholar]
  22. Slobodkina GB, Baslerov RV, Novikov AA, Bonch-Osmolovskaya EA, Slobodkin AI. Thermodesulfitimonas autotrophica gen. nov., sp. nov., a thermophilic, obligate sulfite-reducing bacterium isolated from a terrestrial hot spring. Int J Syst Evol Microbiol 2017;67:301–305 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002599
Loading
/content/journal/ijsem/10.1099/ijsem.0.002599
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error