1887

Abstract

Strain SYSU D8010 was isolated from a desert sand sample collected in Saudi Arabia. The taxonomic position of the isolate was investigated by the polyphasic taxonomic approach. The isolate was found to be Gram-positive and aerobic. The strain was able to grow at 14–40 °C, pH 5.0–9.0 and in the presence of up to 22 % (w/v) NaCl. Strain SYSU D8010 contained meso-diaminopimelic acid as cell-wall diamino acid, and arabinose, fucose, galactose, glucose and rhamnose as the whole-cell sugars. The primary polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositolmannosides. Menaquinone MK-9(H4) was detected as the respiratory quinone; and anteiso-C17 : 0, iso-C16 : 0, iso-C15 : 0 and iso-C17 : 0 as the predominant fatty acids. Pairwise comparison of the 16S rRNA gene sequences indicated that strain SYSU D8010 had a sequence similarity of 97.8 % to Saccharopolyspora halophila YIM 90500. The genomic DNA G+C content of strain SYSU D8010 was determined to be 69.9 mol%. Based on the analyses of the phenotypic, genotypic and phylogenetic characteristics, strain SYSU D8010 was determined to represent a novel species of the genus Saccharopolyspora , for which the name Saccharopolyspora deserti sp. nov. is proposed. The type strain of the species is SYSU D8010 (=KCTC 39989=CPCC 204620).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002598
2018-01-30
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/860.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002598&mimeType=html&fmt=ahah

References

  1. Lacey J, Goodfellow M, Lacy J, Goodfellow M. A novel actinomycete from sugar-cane bagasse: Saccharopolyspora hirsuta gen. et. sp. nov. J Gen Microbiol 1975; 88: 75– 85 [CrossRef] [PubMed]
    [Google Scholar]
  2. Korn-Wendisch F, Kempf A, Grund E, Kroppenstedt RM, Kutzner HJ. Transfer of Faenia rectivirgula Kurup and Agre 1983 to the Genus Saccharopolyspora Lacey and Goodfellow 1975, Elevation of Saccharopolyspora hirsuta subsp. taberi Labeda 1987 to species level, and emended description of the genus Saccharopolyspora. Int J Syst Bacteriol 1989; 39: 430– 441 [CrossRef]
    [Google Scholar]
  3. Warwick S, Bowen T, McVeigh H, Embley TM. A phylogenetic analysis of the family Pseudonocardiaceae and the genera Actinokineospora and Saccharothrix with 16S rRNA sequences and a proposal to combine the genera Amycolata and Pseudonocardia in an emended genus Pseudonocardia. Int J Syst Bacteriol 1994; 44: 293– 299 [CrossRef] [PubMed]
    [Google Scholar]
  4. Kim SB, Goodfellow M. Saccharopolyspora. In Bergey’s Manual of Systematics of Archaea and Bacteria Hoboken, NJ: John Wiley & Sons, Inc; 2015; pp. 1– 30
    [Google Scholar]
  5. Embley TM, Wait R, Dobson G, Goodfellow M. Fatty acid composition in the classification of Saccharopolyspora hirsuta. FEMS Microbiol Lett 1987; 41: 131– 135 [CrossRef]
    [Google Scholar]
  6. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44: 992– 993 [PubMed]
    [Google Scholar]
  7. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012; 62: 2650– 2656 [CrossRef] [PubMed]
    [Google Scholar]
  8. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178: 703– 704 [CrossRef] [PubMed]
    [Google Scholar]
  9. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24: 710– 715 [CrossRef] [PubMed]
    [Google Scholar]
  10. McFaddin JF. Biochemical Tests for Identification of Medical Bacteria Philadelphia: Williams & Wilkins Co; 1976
    [Google Scholar]
  11. Smibert R, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  12. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  13. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5: 2359– 2367 [CrossRef]
    [Google Scholar]
  14. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  15. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20: 16
    [Google Scholar]
  16. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29: 319– 322 [CrossRef]
    [Google Scholar]
  17. Lechevalier MP, Lechevalier HA. The chemotaxonomy of Actinomycetes. In Dietz TDW. (editor) Actinomycete Taxonomy, Special Publication no 6 Arlington, VA: Society for Industrial Microbiology; 1980; pp. 227– 291
    [Google Scholar]
  18. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  19. Liu YH, Guo JW, Salam N, Li L, Zhang YG et al. Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny, distribution and screening for industrially important traits. 3 Biotech 2016; 6: 209 [CrossRef] [PubMed]
    [Google Scholar]
  20. Yang ZW, Salam N, Hua ZS, Liu BB, Han MX et al. Siccirubricoccus deserti gen. nov., sp. nov., a proteobacterium isolated from a desert sample. Int J Syst Evol Microbiol 2017; 67: 4862– 4867 [CrossRef] [PubMed]
    [Google Scholar]
  21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403– 410 [CrossRef] [PubMed]
    [Google Scholar]
  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1618 [CrossRef] [PubMed]
    [Google Scholar]
  23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  26. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  29. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1984
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  31. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  32. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  33. Tang SK, Wang Y, Cai M, Zhi XY, Lou K et al. Saccharopolyspora halophila sp. nov., a novel halophilic actinomycete isolated from a saline lake in China. Int J Syst Evol Microbiol 2009; 59: 555– 558 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002598
Loading
/content/journal/ijsem/10.1099/ijsem.0.002598
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error