1887

Abstract

A taxonomic study was performed on strain LCB256, which was isolated from a saline-alkali soil sample taken from northwestern China. Cells of strain LCB256 were Gram-stain-positive, aerobic, rod-shaped and grew at 3–17 % (w/v) NaCl (optimum 10–15 %), 10–52 °C (optimum 25–30 °C) and pH 7.0–9.0 (optimum 8.0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain LCB256 was most closely related to the two genera of Ornithinibacillus and Oceanobacillus , showing highest sequence similarity to Oceanobacillus limi KCTC 13823 (97.8 %) and Ornithinibacillus bavariensis WSBC 24001 (97.2 %). The peptidoglycan amino acid type was found to be A4β and the major respiratory quinone was determined to be MK-7. The polar lipid profile of strain LCB256 contained diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid and two unidentified aminolipids. The dominant cellular fatty acids were anteiso-C15 : 0 and iso-C15 : 0. The G+C content of genomic DNA was 39.3 mol%. DNA–DNA relatedness values between strain LCB256 and Ornithinibacillus halophilus KCTC 13822 and Oceanobacillus limi KCTC 13823 were 46.2 and 34.8 %, respectively. Based on this polyphasic taxonomic study, a novel species of the genus Ornithinibacillus , Ornithinibacillus salinisoli sp. nov. is proposed. The type strain is LCB256 (=CGMCC 1.15809=KCTC 33862).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002580
2018-01-22
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/769.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002580&mimeType=html&fmt=ahah

References

  1. Mayr R, Busse HJ, Worliczek HL, Ehling-Schulz M, Scherer S. Ornithinibacillus gen. nov., with the species Ornithinibacillus bavariensis sp. nov. and Ornithinibacillus californiensis sp. nov. Int J Syst Evol Microbiol 2006; 56: 1383– 1389 [CrossRef] [PubMed]
    [Google Scholar]
  2. Kämpfer P, Falsen E, Lodders N, Langer S, Busse HJ et al. Ornithinibacillus contaminans sp. nov., an endospore-forming species. Int J Syst Evol Microbiol 2010; 60: 2930– 2934 [CrossRef] [PubMed]
    [Google Scholar]
  3. Shin NR, Whon TW, Kim MS, Roh SW, Jung MJ et al. Ornithinibacillus scapharcae sp. nov., isolated from a dead ark clam. Antonie van Leeuwenhoek 2012; 101: 147– 154 [CrossRef] [PubMed]
    [Google Scholar]
  4. Bagheri M, Amoozegar MA, Schumann P, Didari M, Mehrshad M et al. Ornithinibacillus halophilus sp. nov., a moderately halophilic, Gram-stain-positive, endospore-forming bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63: 844– 848 [CrossRef] [PubMed]
    [Google Scholar]
  5. Lu Q, Yang G, Ma C, Qin D, Li D et al. Ornithinibacillus halotolerans sp. nov., isolated from a saline soil. Int J Syst Evol Microbiol 2014; 64: 1685– 1689 [CrossRef] [PubMed]
    [Google Scholar]
  6. Wu C, Chang M, Yang G, Zhou S, Zhuang L. Ornithinibacillus heyuanensis sp. nov., isolated from South China. Antonie van Leeuwenhoek 2014; 106: 235– 241 [CrossRef] [PubMed]
    [Google Scholar]
  7. Lu Q, Yuan H, Li J, Zhao Y, Zhou S. Ornithinibacillus composti sp. nov., isolated from sludge compost and emended description of the genus Ornithinibacillus. Antonie van Leeuwenhoek 2015; 107: 813– 819 [CrossRef] [PubMed]
    [Google Scholar]
  8. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57: 1424– 1428 [CrossRef] [PubMed]
    [Google Scholar]
  9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  10. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  13. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  14. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  16. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933; 77: 194 [CrossRef] [PubMed]
    [Google Scholar]
  17. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  18. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981
    [Google Scholar]
  19. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55: 1149– 1153 [CrossRef] [PubMed]
    [Google Scholar]
  20. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25: 360– 375 [CrossRef] [PubMed]
    [Google Scholar]
  21. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic gram-negative rods. Microbiology 1982; 128: 1959– 1968 [CrossRef]
    [Google Scholar]
  22. Xu LH, Li WJ, Liu ZH, Jiang CL. Actinomycete Systematic—Principle, Methods and Practice Beijing: Science Press; 2007; pp. 54– 66
    [Google Scholar]
  23. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29: 319– 322 [CrossRef]
    [Google Scholar]
  24. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20: 435– 443 [CrossRef]
    [Google Scholar]
  25. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  26. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46: 234– 239 [CrossRef] [PubMed]
    [Google Scholar]
  27. Kates M. Techniques of lipidology: isolation, analysis and identification of lipids. In Work TS, Work E. (editors) Laboratory Techniques in Biochemistry and Molecular Biologyvol. 3 Amsterdam: Elsevier; 1972; pp. 269– 610
    [Google Scholar]
  28. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42: 989– 1005 [CrossRef]
    [Google Scholar]
  29. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61: 1165– 1169 [CrossRef] [PubMed]
    [Google Scholar]
  30. Amoozegar MA, Bagheri M, Makhdoumi-Kakhki A, Didari M, Schumann P et al. Oceanobacillus limi sp. nov., a moderately halophilic bacterium from a salt lake. Int J Syst Evol Microbiol 2014; 64: 1284– 1289 [CrossRef] [PubMed]
    [Google Scholar]
  31. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5: 109– 118 [CrossRef] [PubMed]
    [Google Scholar]
  32. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  33. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
    [Google Scholar]
  34. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  35. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002580
Loading
/content/journal/ijsem/10.1099/ijsem.0.002580
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error