1887

Abstract

An aerobic, Gram-negative, motile by means of a single polar flagellum, and ovoid-shaped bacterium, designated D3, was isolated from shallow stream sediments in Sinan-gun, South Korea. Growth occurred at 15–40 °C (optimum 35 °C), at pH 7.0–8.0 (optimum pH 7.0), and at an optimum NaCl concentration of 0.5 % (w/v). The major cellular fatty acids (>7 % of the total) were C16 : 0, C18 : 0 2-OH, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The predominant quinone was ubiquinone-10, and the G+C content of the genomic DNA of strain D3 was 73.1 mol%. The major polyamine was spermidine. The major polar lipids of the isolate were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain D3 clustered with Roseomonas aquatica TR53 within the genus Roseomonas . The 16S rRNA gene sequence of strain D3 showed the highest sequence similarity to R. aquatica TR53 (95.9 %), followed by Roseomonas rosea 173-96 (95.7 %) and Roseomonas aerilata 5420S-30 (95.0 %). Based on the phenotypic, phylogenetic and chemotaxonomic characterization, strain D3 represents a novel species of the genus Roseomonas , for which the name Roseomonas fluminis sp. nov. is proposed. The type strain is D3 (=KACC 19269=JCM 31968).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002578
2018-01-19
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/782.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002578&mimeType=html&fmt=ahah

References

  1. Rihs JD, Brenner DJ, Weaver RE, Steigerwalt AG, Hollis DG et al. Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 1993; 31: 3275– 3283 [PubMed]
    [Google Scholar]
  2. Sánchez-Porro C, Gallego V, Busse HJ, Kämpfer P, Ventosa A. Transfer of Teichococcus ludipueritiae and Muricoccus roseus to the genus Roseomonas, as Roseomonas ludipueritiae comb. nov. and Roseomonas rosea comb. nov., respectively, and emended description of the genus Roseomonas. Int J Syst Evol Microbiol 2009; 59: 1193– 1198 [CrossRef] [PubMed]
    [Google Scholar]
  3. Venkata Ramana V, Sasikala C, Takaichi S, Ramana C. Roseomonas aestuarii sp. nov., a bacteriochlorophyll-a containing alphaproteobacterium isolated from an estuarine habitat of India. Syst Appl Microbiol 2010; 33: 198– 203 [CrossRef] [PubMed]
    [Google Scholar]
  4. Subhash Y, Bang JJ, You TH, Lee SS. Roseomonas rubra sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66: 3821– 3827 [CrossRef] [PubMed]
    [Google Scholar]
  5. Subhash Y, Lee SS. Roseomonas suffusca sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2017; 67: 2390– 2396 [CrossRef] [PubMed]
    [Google Scholar]
  6. Kim SJ, Weon HY, Ahn JH, Hong SB, Seok SJ et al. Roseomonas aerophila sp. nov., isolated from air. Int J Syst Evol Microbiol 2013; 63: 2334– 2337 [CrossRef] [PubMed]
    [Google Scholar]
  7. Yoo SH, Weon HY, Noh HJ, Hong SB, Lee CM et al. Roseomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58: 1482– 1485 [CrossRef] [PubMed]
    [Google Scholar]
  8. Gallego V, Sánchez-Porro C, García MT, Ventosa A. Roseomonas aquatica sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2006; 56: 2291– 2295 [CrossRef] [PubMed]
    [Google Scholar]
  9. Lee JH, Kim MS, Baik KS, Kim HM, Lee KH et al. Roseomonas wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2015; 65: 4049– 4054 [CrossRef] [PubMed]
    [Google Scholar]
  10. Damtab J, Nutaratat P, Boontham W, Srisuk N, Duangmal K et al. Roseomonas elaeocarpi sp. nov., isolated from olive (Elaeocarpus hygrophilus Kurz.) phyllosphere. Int J Syst Evol Microbiol 2016; 66: 474– 480 [CrossRef] [PubMed]
    [Google Scholar]
  11. Nutaratat P, Srisuk N, Duangmal K, Yurimoto H, Sakai Y et al. Roseomonas musae sp. nov., a new bacterium isolated from a banana phyllosphere. Antonie van Leeuwenhoek 2013; 103: 617– 624 [CrossRef] [PubMed]
    [Google Scholar]
  12. Chung EJ, Yoon HS, Kim KH, Jeon CO, Chung YR. Roseomonas oryzicola sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.). Int J Syst Evol Microbiol 2015; 65: 4839– 4844 [CrossRef] [PubMed]
    [Google Scholar]
  13. Yan ZF, Lin P, Li CT, Kook M, Wang QJ et al. Roseomonas hibiscisoli sp. nov., isolated from the rhizosphere of Mugunghwa (Hibiscus syriacus). Int J Syst Evol Microbiol 2017; 67: 2873– 2878 [CrossRef] [PubMed]
    [Google Scholar]
  14. Weyant R, Whitney A. Genus Roseomonas Rihs, Brenner, Weaver, Steigerwalt, Hollis, and Yu 1998, 627VP (Effective publication: Rihs, Brenner, Weaver, Steigerwalt, Hollis, and Yu 1993, 3282). In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2C New York: Springer; 1998; pp. 88– 92
    [Google Scholar]
  15. Barrow GI, Feltham RK. Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd ed. London: Cambridge University Press; 1993; [Crossref]
    [Google Scholar]
  16. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley & Sons; 1991; pp. 115– 175
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  19. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28: 1823– 1829 [CrossRef] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  23. McCammon SA, Innes BH, Bowman JP, Franzmann PD, Dobson SJ et al. Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater Antarctic lake. Int J Syst Bacteriol 1998; 48: 1405– 1412 [CrossRef] [PubMed]
    [Google Scholar]
  24. Simmons JS. A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolation of certain fungi: with colored plate. J Infect Dis 1926; 39: 209– 214 [CrossRef]
    [Google Scholar]
  25. Prescott L, Harley JP. The effects of chemical agents on bacteria II: antimicrobial agents (Kirby-Bauer Method). In Prescott LM, Harley JP. (editors) Laboratory Exercises in Microbiology, 5th ed. New York: McGraw-Hill; 2001; pp. 257– 262
    [Google Scholar]
  26. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Tech Bull Regist Med Technol 1966; 36: 49– 52 [PubMed]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  28. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 206 [Crossref]
    [Google Scholar]
  29. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  30. Collins MD. Isoprenoid quinones. In Goodfellow M, O'Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp. 345– 401
    [Google Scholar]
  31. Tindall BJ. Respiratory lipoquinones as biomarkers. In Akkermans A, de Bruijn F, van Elsas D. (editors) Molecular Microbial Ecology Manual Section 4.1.5, Supplement 1, 2nd ed. Dordrecht, Netherlands: Kluwer Publishers; 2005
    [Google Scholar]
  32. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11: 1– 8 [CrossRef]
    [Google Scholar]
  33. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  34. Chen Q, Sun LN, Zhang XX, He J, Kwon SW et al. Roseomonas rhizosphaerae sp. nov., a triazophos-degrading bacterium isolated from soil. Int J Syst Evol Microbiol 2014; 64: 1127– 1133 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002578
Loading
/content/journal/ijsem/10.1099/ijsem.0.002578
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error