1887

Abstract

A Gram-stain-positive and pale pink-pigmented bacterial strain, designated ID0501, was isolated from an automobile evaporator core collected in the Republic of Korea. The cells were aerobic and coccoidal. The strain grew at 15–40 ˚C (optimum, 37 ˚C), at pH 6.0–7.0 (optimum, pH 6.5), and in the presence of 0–1.5 % (w/v) NaCl. Phylogenetically, the strain was related to members of the genus Deinococcus and showed the highest sequence similarity, of 96.9 %, with Deinococcus metallilatus MA1002. The major fatty acids of the strain were iso-C17 : 0, iso-C15 : 0 and iso-C13 : 0. The predominant respiratory quinone was MK-8. The polar lipids profile revealed the presence of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, unidentified phospholipids, an unidentified aminolipid and unidentified glycolipids. The DNA G+C content of the strain was 68.3 mol%. On the basis of phenotypic, genotypic and chemotaxonomic data, strain ID0501 represents a novel species of the genus Deinococcus , for which the name Deinococcus aluminii sp. nov. (=KACC 19286=NBRC 112889) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002574
2018-01-16
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/776.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002574&mimeType=html&fmt=ahah

References

  1. Brooks BW, Murray RGE. Nomenclature for "Micrococcus radiodurans" and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 1981; 31: 353– 360 [CrossRef]
    [Google Scholar]
  2. Zhang YQ, Sun CH, Li WJ, Yu LY, Zhou JQ et al. Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 2007; 57: 370– 375 [CrossRef] [PubMed]
    [Google Scholar]
  3. Asker D, Awad TS, Beppu T, Ueda K. Deinococcus aquiradiocola sp. nov., isolated from a radioactive site in Japan. Int J Syst Evol Microbiol 2009; 59: 144– 149 [CrossRef] [PubMed]
    [Google Scholar]
  4. de Groot A, Chapon V, Servant P, Christen R, Saux MF et al. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 2005; 55: 2441– 2446 [CrossRef] [PubMed]
    [Google Scholar]
  5. Weon HY, Kim BY, Schumann P, Son JA, Jang J et al. Deinococcus cellulosilyticus sp. nov., isolated from air. Int J Syst Evol Microbiol 2007; 57: 1685– 1688 [CrossRef] [PubMed]
    [Google Scholar]
  6. Yoo SH, Weon HY, Kim SJ, Kim YS, Kim BY et al. Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2010; 60: 1191– 1195 [CrossRef] [PubMed]
    [Google Scholar]
  7. Im WT, Jung HM, Ten LN, Kim MK, Bora N et al. Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2008; 58: 2348– 2353 [CrossRef] [PubMed]
    [Google Scholar]
  8. Shashidhar R, Bandekar JR. Deinococcus piscis sp. nov., a radiation-resistant bacterium isolated from a marine fish. Int J Syst Evol Microbiol 2009; 59: 2714– 2717 [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen W, Wang B, Hong H, Yang H, Liu SJ. Deinococcus reticulitermitis sp. nov., isolated from a termite gut. Int J Syst Evol Microbiol 2012; 62: 78– 83 [CrossRef] [PubMed]
    [Google Scholar]
  10. Kim DU, Lee H, Lee JH, Ahn JH, Lim S et al. Deinococcus metallilatus sp. nov. and Deinococcus carri sp. nov., isolated from a car air-conditioning system. Int J Syst Evol Microbiol 2015; 65: 3175– 3182 [CrossRef] [PubMed]
    [Google Scholar]
  11. Lai WA, Kämpfer P, Arun AB, Shen FT, Huber B et al. Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol 2006; 56: 787– 791 [CrossRef] [PubMed]
    [Google Scholar]
  12. Asker D, Awad TS, McLandsborough L, Beppu T, Ueda K. Deinococcus depolymerans sp. nov., a gamma- and UV-radiation-resistant bacterium, isolated from a naturally radioactive site. Int J Syst Evol Microbiol 2011; 61: 1448– 1453 [CrossRef] [PubMed]
    [Google Scholar]
  13. Srinivasan S, Kim MK, Lim S, Joe M, Lee M. Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. Int J Syst Evol Microbiol 2012; 62: 1265– 1270 [CrossRef] [PubMed]
    [Google Scholar]
  14. Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R et al. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 1997; 47: 939– 947 [CrossRef] [PubMed]
    [Google Scholar]
  15. Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R et al. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 2004; 27: 636– 645 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kim DU, Ka JO. Roseomonas soli sp. nov., isolated from an agricultural soil cultivated with Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 2014; 64: 1024– 1029 [CrossRef] [PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  18. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28: 1823– 1829 [CrossRef] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  24. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society For Microbiology; 2007; pp. 309– 329
    [Google Scholar]
  25. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murra RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  26. Ten LN, Xu JL, Jin FX, Im WT, Oh HM et al. Spirosoma panaciterrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59: 331– 335 [CrossRef] [PubMed]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  28. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  30. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp. 121– 161
    [Google Scholar]
  31. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [PubMed] [Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002574
Loading
/content/journal/ijsem/10.1099/ijsem.0.002574
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error