1887

Abstract

A heterotrophic, Gram-stain-negative, aerobic, sodium-requiring and motile bacterium was isolated from oil-contaminated surface water of the Gulf of Mexico during the Deepwater Horizon oil spill. Strain O3.65 showed highest 16S rRNA gene sequence similarity to Phaeobacter gallaeciensis BS107 and Phaeobacter inhibens T5, both with 98.3 %, respectively. Based on complete genome analysis, highest similarity was observed to species of the genus Ruegeria . Strain O3.65 exhibited a broad salinity, temperature and pH range of 0.5–10 % NaCl, 4–45 °C and 5.5–9.0, respectively. The DNA G+C content of strain O3.65 was 61.5 mol%. The major respiratory lipoquinone was ubiquinone-10 (Q-10), the most dominant fatty acids (>1 %) comprised 18 : 1ω7c and 18 : 1ω7c 11-methyl, 10 : 0 3OH, 12 : 1 3OH, 14 : 1 3OH/3-oxo-14 : 0, 16 : 0, 16 : 0 2OH, 18 : 1 2OH and 12 : 1. The polar lipid pattern indicated presence of phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid, two unidentified phospholipids and seven unidentified lipids. On Difco marine broth agar, strain O3.65 formed smooth, shiny white to beige and convex colonies with regular edges. Phylogenetic, phylogenomic and phenotypic differences revealed that strain O3.65 represents a new species of a novel genus within the family Rhodobacteraceae , for which we propose the name Tritonibacter horizontis gen. nov., sp. nov. The type strain of the type species is O3.65 (=DSM 101689=LMG 29740).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002573
2018-02-06
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/736.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002573&mimeType=html&fmt=ahah

References

  1. Baelum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R et al. Deep-sea bacteria enriched by oil and dispersant from the deepwater horizon spill. Environ Microbiol 2012; 14: 2405– 2416 [CrossRef] [PubMed]
    [Google Scholar]
  2. Joye SB, Teske AP, Kostka JE. Microbial dynamics following the macondo oil well blowout across Gulf of Mexico environments. BioScience 2014; 64: 766– 777 [CrossRef]
    [Google Scholar]
  3. Yang T, Nigro LM, Gutierrez T, D′Ambrosio L, Joye SB et al. Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep Sea Res II 2016; 129: 282– 291 [CrossRef]
    [Google Scholar]
  4. Arnosti C, Ziervogel K, Yang T, Teske A. Oil-derived marine aggregates – hot spots of polysaccharide degradation by specialized bacterial communities. Deep Sea Res II 2016; 129: 179– 186 [CrossRef]
    [Google Scholar]
  5. Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 2017; 11: 1483– 1499 [CrossRef] [PubMed]
    [Google Scholar]
  6. Buchan A, González JM, Moran MA. Overview of the marine roseobacter lineage. Appl Environ Microbiol 2005; 71: 5665– 5677 [CrossRef] [PubMed]
    [Google Scholar]
  7. Brinkhoff T, Giebel HA, Simon M. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 2008; 189: 531– 539 [CrossRef] [PubMed]
    [Google Scholar]
  8. Wagner-Döbler I, Biebl H. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 2006; 60: 255– 280 [CrossRef] [PubMed]
    [Google Scholar]
  9. Buchan A, González JM. Roseobacter. In Timmis K. (editor) Handbook of Hydrocarbon and Lipid Microbiology Berlin Heidelberg: Springer; 2010; pp. 1335– 1343 [Crossref]
    [Google Scholar]
  10. Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K. Tropicibacter naphthalenivorans gen. nov., sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from Semarang Port in Indonesia. Int J Syst Evol Microbiol 2009; 59: 392– 396 [CrossRef] [PubMed]
    [Google Scholar]
  11. Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K. Tropicimonas isoalkanivorans gen. nov., sp. nov., a branched-alkane-degrading bacterium isolated from Semarang Port in Indonesia. Int J Syst Evol Microbiol 2009; 59: 388– 391 [CrossRef] [PubMed]
    [Google Scholar]
  12. Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K. Characterization of diverse hydrocarbon-degrading bacteria isolated from Indonesian seawater. Microbes Environ 2007; 22: 412– 415 [CrossRef]
    [Google Scholar]
  13. Lamendella R, Strutt S, Borglin S, Chakraborty R, Tas N et al. Assessment of the deepwater horizon oil spill impact on Gulf coast microbial communities. Front Microbiol 2014; 5: 130 [CrossRef] [PubMed]
    [Google Scholar]
  14. Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE et al. Succession of hydrocarbon-degrading bacteria in the aftermath of the deepwater horizon oil spill in the gulf of Mexico. Environ Sci Technol 2013; 47: 10860– 10867 [CrossRef] [PubMed]
    [Google Scholar]
  15. Giebel HA, Klotz F, Voget S, Poehlein A, Grosser K et al. Draft genome sequence of the marine Rhodobacteraceae strain O3.65, cultivated from oil-polluted seawater of the deepwater horizon oil spill. Stand Genomic Sci 2016; 11: 81– 93 [CrossRef] [PubMed]
    [Google Scholar]
  16. Zech H, Thole S, Schreiber K, Kalhöfer D, Voget S et al. Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. Proteomics 2009; 9: 3677– 3697 [CrossRef] [PubMed]
    [Google Scholar]
  17. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ et al. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 2006; 56: 1293– 1304 [CrossRef] [PubMed]
    [Google Scholar]
  18. Ruivo M, Cartaxana P, Cardoso MI, Tenreiro A, Tenreiro R et al. Extraction and quantification of pigments in aerobic anoxygenic phototrophic bacteria. Limnol Oceanogr Methods 2014; 12: 338– 350 [CrossRef]
    [Google Scholar]
  19. Giebel HA, Kalhoefer D, Gahl-Janssen R, Choo YJ, Lee K et al. Planktomarina temperata gen. nov., sp. nov., belonging to the globally distributed RCA cluster of the marine Roseobacter clade, isolated from the German Wadden Sea. Int J Syst Evol Microbiol 2013; 63: 4207– 4217 [CrossRef] [PubMed]
    [Google Scholar]
  20. Hahnke S, Tindall BJ, Schumann P, Sperling M, Brinkhoff T et al. Planktotalea frisia gen. nov., sp. nov., isolated from the southern North Sea. Int J Syst Evol Microbiol 2012; 62: 1619– 1624 [CrossRef] [PubMed]
    [Google Scholar]
  21. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978; 5: 123– 127 [CrossRef]
    [Google Scholar]
  22. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  23. Cypionka H, Pfennig N. Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol 1986; 143: 396– 399 [CrossRef]
    [Google Scholar]
  24. Widdel F, Kohring G-W, Mayer F. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch Microbiol 1983; 134: 286– 294 [CrossRef]
    [Google Scholar]
  25. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43: 260– 296 [PubMed]
    [Google Scholar]
  26. Widdel F, Bak F. Gram-negative mesophilic sulfate-reducing bacteria. In Balows A, Trüper H, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes New York: Springer; 1992; pp. 3352– 3378 [Crossref]
    [Google Scholar]
  27. Griess P. Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt “Ueber einige Azoverbindungen”. Berichte der deutschen chemischen Gesellschaft 1879; 12: 426– 428 [CrossRef]
    [Google Scholar]
  28. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32: 1363– 1371 [CrossRef] [PubMed]
    [Google Scholar]
  29. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2: 117– 134 [CrossRef] [PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  31. Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016; 6: 24373 [CrossRef] [PubMed]
    [Google Scholar]
  32. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792– 1797 [CrossRef] [PubMed]
    [Google Scholar]
  33. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011; 27: 1164– 1165 [CrossRef] [PubMed]
    [Google Scholar]
  34. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312– 1313 [CrossRef] [PubMed]
    [Google Scholar]
  35. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010 New Orleans, LA: 2010; pp. 1– 8
    [Google Scholar]
  36. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  37. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  38. Tindall BJ. Respiratory lipoquinones as biomarkers. In Akkermans A, de Bruijn F, van Elsas D. (editors) Molecular Microbial Ecology Manual section 415, supplement 1 Dordrecht, Netherlands: Kluwer; 1996
    [Google Scholar]
  39. Sasser M. IDentification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, USA: MIDI Inc.; 1990
    [Google Scholar]
  40. Dang H, Lovell CR. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 2000; 66: 467– 475 [CrossRef] [PubMed]
    [Google Scholar]
  41. Bruhn JB, Gram L, Belas R. Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions. Appl Environ Microbiol 2007; 73: 442– 450 [CrossRef] [PubMed]
    [Google Scholar]
  42. Breider S, Scheuner C, Schumann P, Fiebig A, Petersen J et al. Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov. and Pseudophaeobacter gen. nov. Front Microbiol 2014; 5: 416 [CrossRef] [PubMed]
    [Google Scholar]
  43. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  44. Martens T, Gram L, Grossart HP, Kessler D, Müller R et al. Bacteria of the Roseobacter clade show potential for secondary metabolite production. Microb Ecol 2007; 54: 31– 42 [CrossRef] [PubMed]
    [Google Scholar]
  45. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC et al. The family Rhodobacteraceae. In Rosenberg E, DeLong EF, Stackebrandt E, Lory S, Thompson F et al. (editors) The prokaryotes – Alphaproteobacteria and Betaproteobacteria, 4th ed.vol. 8 Berlin: Springer; 2014; pp. 439– 512 [Crossref]
    [Google Scholar]
  46. Vandecandelaere I, Segaert E, Mollica A, Faimali M, Vandamme P. Leisingera aquimarina sp. nov., isolated from a marine electroactive biofilm, and emended descriptions of Leisingera methylohalidivorans Schaefer et al. 2002, Phaeobacter daeponensis Yoon et al. 2007 and Phaeobacter inhibens Martens et al. 2006. Int J Syst Evol Microbiol 2008; 58: 2788– 2793 [CrossRef] [PubMed]
    [Google Scholar]
  47. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Faimali M et al. Ruegeria scottomollicae sp. nov., isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol 2008; 58: 2726– 2733 [CrossRef] [PubMed]
    [Google Scholar]
  48. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A et al. Nautella italica gen. nov., sp. nov., isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol 2009; 59: 811– 817 [CrossRef] [PubMed]
    [Google Scholar]
  49. Zhang DC, Li HR, Xin YH, Liu HC, Chi ZM et al. Phaeobacter arcticus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 2008; 58: 1384– 1387 [CrossRef] [PubMed]
    [Google Scholar]
  50. Ruiz-Ponte C, Cilia V, Lambert C, Nicolas JL. Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. Int J Syst Bacteriol 1998; 48: 537– 542 [CrossRef] [PubMed]
    [Google Scholar]
  51. Schaefer JK, Goodwin KD, McDonald IR, Murrell JC, Oremland RS. Leisingera methylohalidivorans gen. nov., sp. nov., a marine methylotroph that grows on methyl bromide. Int J Syst Evol Microbiol 2002; 52: 851– 859 [CrossRef] [PubMed]
    [Google Scholar]
  52. Yoon JH, Kang SJ, Lee SY, Oh TK. Phaeobacter daeponensis sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2007; 57: 856– 861 [CrossRef] [PubMed]
    [Google Scholar]
  53. Rüger HJ, Höfle MG. Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol 1992; 42: 133– 143 [CrossRef] [PubMed]
    [Google Scholar]
  54. Muramatsu Y, Uchino Y, Kasai H, Suzuki K, Nakagawa Y. Ruegeria mobilis sp. nov., a member of the Alphaproteobacteria isolated in Japan and Palau. Int J Syst Evol Microbiol 2007; 57: 1304– 1309 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002573
Loading
/content/journal/ijsem/10.1099/ijsem.0.002573
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error