sp. nov., a novel myxobacterium from an Iranian desert Free

Abstract

An orange-coloured myxobacterium, MNa11734, was isolated from desert in Iran. MNa11734 had rod-shaped vegetative cells, moved by gliding and was bacteriolytic. No real fruiting body formation could be observed, but sporangioles were produced on water agar. The strain was mesophilic, strictly aerobic and chemoheterotrophic. 16S rRNA gene analyses revealed that MNa11734 belonged to the family , genus and was closely related to Na p29 (DSM 14622) and Na e1 (DSM 71), with 97.8 and 97.6 % 16S rRNA gene sequence similarity, respectively. Laboratory-measured DNA–DNA hybridization showed only 9.5/15.7 % (reciprocal) similarity between the novel strain and Na p29, and 14.1/20.4 % between the strain and Na e1, whereas DNA–DNA hybridization estimates derived from draft genome sequences were 21.8–23.0 % and 22.2–23.7 %, respectively, depending on the calculation method. The G+C content of DNA from MNa11734 was 73.3 mol%, for Nap29 it was 71.8 mol% and for Nae1 it was 72.2 mol%. The major fatty acids of the new strain were C (56.2 %), -C (14.4 %), C (8.2 %), C (6.6 %) and -C (5.9 %). Strain MNa11734 exhibited phylogenetic and physiological similarities to the two other species of , i.e. and , but the differences were sufficient enough to represent a novel species, for which the name sp. nov. is proposed. The type strain is MNa11734 (=DSM 104509=NCCB 100618).

Keyword(s): Nannocystis and new species
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002569
2018-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/721.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002569&mimeType=html&fmt=ahah

References

  1. Sanford RA, Cole JR, Tiedje JM. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 2002; 68:893–900 [View Article][PubMed]
    [Google Scholar]
  2. Garcia R, Krug D, Müller R. Discovering natural products from myxobacteria with emphasis on rare producer strains in combination with improved analytical methods. In Hopwood DA. (editor) Methods in Enzymology vol. 458 New York, NY: Academic Press; 2009 pp. 59–91
    [Google Scholar]
  3. Shimkets LJ, Dworkin M, Reichenbach H. The myxobacteria. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E et al. (editors) The Prokaryotes: A Handbook on the Biology of Bacteria vol. 7 New York: Springer; 2006 pp. 31–115
    [Google Scholar]
  4. Gerth K, Pradella S, Perlova O, Beyer S, Müller R. Myxobacteria: proficient producers of novel natural products with various biological activities–past and future biotechnological aspects with the focus on the genus Sorangium . J Biotechnol 2003; 106:233–253 [View Article][PubMed]
    [Google Scholar]
  5. Shimkets L, Woese CR. A phylogenetic analysis of the myxobacteria: basis for their classification. Proc Natl Acad Sci USA 1992; 89:9459–9463 [View Article][PubMed]
    [Google Scholar]
  6. Spröer C, Reichenbach H, Stackebrandt E. The correlation between morphological and phylogenetic classification of myxobacteria. Int J Syst Bacteriol 1999; 49:1255–1262 [View Article][PubMed]
    [Google Scholar]
  7. Iizuka T, Jojima Y, Fudou R, Hiraishi A, Ahn JW et al. Plesiocystis pacifica gen. nov., sp. nov., a marine myxobacterium that contains dihydrogenated menaquinone, isolated from the Pacific coasts of Japan. Int J Syst Evol Microbiol 2003; 53:189–195 [View Article][PubMed]
    [Google Scholar]
  8. Iizuka T, Jojima Y, Fudou R, Tokura M, Hiraishi A et al. Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. Syst Appl Microbiol 2003; 26:189–196 [View Article][PubMed]
    [Google Scholar]
  9. Iizuka T, Jojima Y, Hayakawa A, Fujii T, Yamanaka S et al. Pseudenhygromyxa salsuginis gen. nov., sp. nov., a myxobacterium isolated from an estuarine marsh. Int J Syst Evol Microbiol 2013; 63:1360–1369 [View Article][PubMed]
    [Google Scholar]
  10. Reichenbach H. Nannocystis exedens gen. nov., spec. nov., a new myxobacterium of the family Sorangiaceae . Arch Mikrobiol 1970; 70:119–138 [View Article][PubMed]
    [Google Scholar]
  11. Reichenbach H. Genus I. Nannocystis Reichenbach 1970, 137AL. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology vol. 2 The Proteobacteria, part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005 pp. 1137–1142 [Crossref]
    [Google Scholar]
  12. Euzéby J. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2007; 57:893–897 [View Article][PubMed]
    [Google Scholar]
  13. Wenzel SC, Müller R. The biosynthetic potential of myxobacteria and their impact in drug discovery. Curr Opin Drug Discov Devel 2009; 12:220–230[PubMed]
    [Google Scholar]
  14. Weissman KJ, Müller R. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 2010; 27:1276–1295 [View Article][PubMed]
    [Google Scholar]
  15. Gerth K, Müller R. Moderately thermophilic Myxobacteria: novel potential for the production of natural products isolation and characterization. Environ Microbiol 2005; 7:874–880 [View Article][PubMed]
    [Google Scholar]
  16. Reichenbach H, Dworkin M. The myxobacteria. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes Berlin: Springer-Verlag; 1992 pp. 3416–3487 [Crossref]
    [Google Scholar]
  17. Garcia RO, Reichenbach H, Ring MW, Müller R. Phaselicystis flava gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov. Int J Syst Evol Microbiol 2009; 59:1524–1530 [View Article][PubMed]
    [Google Scholar]
  18. Garcia R, Gerth K, Stadler M, Dogma IJ, Müller R. Expanded phylogeny of myxobacteria and evidence for cultivation of the 'unculturables'. Mol Phylogenet Evol 2010; 57:878–887 [View Article][PubMed]
    [Google Scholar]
  19. Madigan MT, Martinko JM, Parker J. Brock Mikrobiologie, Translation of the 9th ed. Spektrum Akademischer Verlag, Gustav Fischer: Heidelberg; 2001 pp. 180
    [Google Scholar]
  20. Mohr KI, Garcia RO, Gerth K, Irschik H, Müller R. Sandaracinus amylolyticus gen. nov., sp. nov., a starch-degrading soil myxobacterium, and description of Sandaracinaceae fam. nov. Int J Syst Evol Microbiol 2012; 62:1191–1198 [View Article][PubMed]
    [Google Scholar]
  21. Garcia R, Pistorius D, Stadler M, Müller R. Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 Fatty acids. J Bacteriol 2011; 193:1930–1942 [View Article][PubMed]
    [Google Scholar]
  22. Gemperlein K, Rachid S, Garcia RO, Wenzel SC, Müller R. Polyunsaturated fatty acid biosynthesis in myxobacteria: different PUFA synthases and their product diversity. Chem Sci 2014; 5:1733–1741 [View Article]
    [Google Scholar]
  23. Garcia R, Müller R. The family Nannocystaceae . In Rosenberg. (editor) The Prokaryotes-Deltaproteobacteria and Prokaryotes-Deltaproteobacteria and Epsilonproteobacteria Berlin, Heidelberg: Springer-Verlag; 2014 pp. 213–229
    [Google Scholar]
  24. Shimelis O, Giese RW. Nuclease P1 digestion/high-performance liquid chromatography, a practical method for DNA quantitation. J Chromatogr A 2006; 1117:132–136 [View Article][PubMed]
    [Google Scholar]
  25. Li G, Shimelis O, Zhou X, Giese RW. Scaled-down nuclease P1 for scaled-up DNA digestion. Biotechniques 2003; 34:908–909[PubMed]
    [Google Scholar]
  26. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester, UK: Wiley; 1991 pp. 115–176
    [Google Scholar]
  27. Stackebrandt E, Liesack W, Goebel BM. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. Faseb J 1993; 7:232–236[PubMed] [Crossref]
    [Google Scholar]
  28. Weidner S, Arnold W, Puhler A. Diversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 1996; 62:766–771[PubMed]
    [Google Scholar]
  29. Wilmotte A, van der Auwera G, de Wachter R. Structure of the 16 S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF ('Mastigocladus laminosus HTF') strain PCC7518, and phylogenetic analysis. FEBS Lett 1993; 317:96–100 [View Article][PubMed]
    [Google Scholar]
  30. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article][PubMed]
    [Google Scholar]
  31. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  32. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci USA 1978; 75:4801–4805 [View Article][PubMed]
    [Google Scholar]
  33. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  34. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969 pp. 21–132 [Crossref]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  36. Chen IC, Griesenauer B, Yu YT, Velicer GJ. A recent evolutionary origin of a bacterial small RNA that controls multicellular fruiting body development. Mol Phylogenet Evol 2014; 73:1–9 [View Article][PubMed]
    [Google Scholar]
  37. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  38. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002 [View Article][PubMed]
    [Google Scholar]
  39. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [View Article][PubMed]
    [Google Scholar]
  40. Stackebrandt E, Ebers J. Taxonomic parameters revisited: Tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  41. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  42. Moradi A, Ebrahimipour GH, Mohr KI, Kämpfer P, Glaeser SP et al. Racemicystis persica sp. nov., a myxobacterium from soil. Int J Syst Evol Microbiol 2017; 67:472–478 [View Article][PubMed]
    [Google Scholar]
  43. Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS One 2015; 10:e0128036 [View Article][PubMed]
    [Google Scholar]
  44. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002569
Loading
/content/journal/ijsem/10.1099/ijsem.0.002569
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed