1887

Abstract

A Gram-stain-negative, aerobic, non-motile, rod-shaped, catalase-positive and oxidase-positive bacteria (THG-T61), was isolated from rhizosphere of Hibiscus syriacus. Growth occurred at 10–37 °C (optimum 25–30 °C), at pH 5.0–9.0 (optimum 7.0) and in the presence of 0–2.0 % NaCl (optimum without NaCl supplement). Based on 16S rRNA gene sequence analysis, the nearest phylogenetic neighbours of strain THG-T61 were identified as Sphingomonas ginsengisoli KCTC 12630 (97.9 %), Sphingomonas jaspsi DSM 18422 (97.8 %), Sphingomonas astaxanthinifaciens NBRC 102146 (97.4 %), Sphingomonas sediminicola KCTC 12629 (97.2 %), ‘ Sphingomonas swuensis’ KCTC 12336 (97.1 %) and Sphingomonas daechungensis KCTC 23718 (96.9 %). The isoprenoid quinone was ubiquinone-10 (Q-10). The major fatty acids were C16 : 0, C17 : 1 ω6c, summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) and summed feature 7 (C18 : 1 ω7c, C18 : 1 ω9t and/or C18 : 1 ω12t). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid, one unidentified lipid, one unidentified phospholipid, one unidentified glycolipid and one unidentified phosphoglycolipid. The polyamine was homospermidine. The DNA G+C content of strain THG-T61 was 65.6 mol%. The DNA–DNA relatedness values between strain THG-T61 and its closest reference strains were less than 49.2 %, which is lower than the threshold value of 70 %. Therefore, strain THG-T61 represents a novel species of the genus Sphingomonas , for which the name Sphingomonas rhizophila sp. nov. is proposed. The type strain is THG-T61 (=KACC 19189=CCTCC AB 2016245).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002566
2018-01-09
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/2/681.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002566&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34: 99– 119 [CrossRef] [PubMed]
    [Google Scholar]
  2. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51: 1405– 1417 [CrossRef] [PubMed]
    [Google Scholar]
  3. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002; 52: 1485– 1496 [CrossRef] [PubMed]
    [Google Scholar]
  4. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003; 53: 1253– 1260 [CrossRef] [PubMed]
    [Google Scholar]
  5. Busse HJ, Kämpfer P, Denner EB. Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 1999; 23: 242– 251 [CrossRef] [PubMed]
    [Google Scholar]
  6. An DS, Liu QM, Lee HG, Jung MS, Kim SC et al. Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov. Int J Syst Evol Microbiol 2013; 63: 496– 501 [CrossRef] [PubMed]
    [Google Scholar]
  7. Asker D, Beppu T, Ueda K. Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol 2007; 57: 1435– 1441 [CrossRef] [PubMed]
    [Google Scholar]
  8. Huy H, Jin L, Lee KC, Kim SG, Lee JS et al. Sphingomonas daechungensis sp. nov., isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 2014; 64: 1412– 1418 [CrossRef] [PubMed]
    [Google Scholar]
  9. Srinivasan S, Lee JJ, Kim MK. Sphingomonas rosea sp. nov. and Sphingomonas swuensis sp. nov., rosy colored β-glucosidase- producing bacteria isolated from soil. J Microbiol 2011; 49: 610– 616 [CrossRef] [PubMed]
    [Google Scholar]
  10. Asker D, Beppu T, Ueda K. Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol Lett 2007; 273: 140– 148 [CrossRef] [PubMed]
    [Google Scholar]
  11. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  13. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  14. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  15. Kimura M. The Neutral Theory of Molecular Evolution UK: Cambridge University Press; 1984
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  18. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  21. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44: 992– 993 [PubMed]
    [Google Scholar]
  22. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178: 703 [CrossRef] [PubMed]
    [Google Scholar]
  23. Yan ZF, Trinh H, Moya G, Lin P, Li CT et al. Lysobacter rhizophilus sp. nov., isolated from rhizosphere soil of mugunghwa, the national flower of South Korea. Int J Syst Evol Microbiol 2016; 66: 4754– 4759 [CrossRef] [PubMed]
    [Google Scholar]
  24. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  25. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  26. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A et al. Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 2008; 56: 625– 636 [CrossRef] [PubMed]
    [Google Scholar]
  27. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  29. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48: 459– 470 [CrossRef]
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  31. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  32. Hu HY, Lim BR, Goto N, Fujie K. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 2001; 47: 17– 24 [PubMed] [Crossref]
    [Google Scholar]
  33. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5: 2359– 2367 [CrossRef]
    [Google Scholar]
  34. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47: 698– 708 [CrossRef]
    [Google Scholar]
  35. Taibi G, Schiavo MR, Gueli MC, Rindina PC, Muratore R et al. Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl 2000; 745: 431– 437 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002566
Loading
/content/journal/ijsem/10.1099/ijsem.0.002566
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error