1887

Abstract

A Gram-stain-negative, aerobic, non-motile and ovoid or rod-shaped bacterial strain, designated JSSK-16, was isolated from the place where the ocean and a freshwater spring meet at Jeju Island, South Korea. Strain JSSK-16 grew optimally at 30 °C, at pH 6.5–8.0 and in the presence of 2.0–4.0 % (w/v) NaCl. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain JSSK-16 joined the clade comprising the type strains of Jannaschia species. Strain JSSK-16 exhibited 16S rRNA gene sequence similarity values of 97.5 and 97.1 % to the type strains of Jannaschia donghaensis and Jannaschia faecimaris , respectively, and of 94.1–96.6 % to the type strains of the other Jannaschia species. Strain JSSK-16 contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c, 11-methyl C18 : 1 ω7c and C18 : 0 as the major fatty acids. The major polar lipids detected in strain JSSK-16 were phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content of strain JSSK-16T was 68.8 mol% and its DNA–DNA relatedness values with the type strains of J. donghaensis and J. faecimaris were 18 and 12, respectively. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain JSSK-16 is separated from recognized species of the genus Jannaschia . On the basis of the data presented, strain JSSK-16 is considered to represent a novel species of the genus Jannaschia , for which the name Jannaschia confluentis sp. nov. is proposed. The type strain is JSSK-16T (=KACC 19436=KCTC 62137=NBRC 113018).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002564
2018-01-08
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/2/669.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002564&mimeType=html&fmt=ahah

References

  1. Wagner-Döbler I, Rheims H, Felske A, Pukall R, Tindall BJ. Jannaschia helgolandensis gen. nov., sp. nov., a novel abundant member of the marine Roseobacter clade from the North Sea. Int J Syst Evol Microbiol 2003; 53: 731– 738 [CrossRef] [PubMed]
    [Google Scholar]
  2. Macián MC, Arahal DR, Garay E, Ludwig W, Schleifer KH et al. Jannaschia rubra sp. nov., a red-pigmented bacterium isolated from sea water. Int J Syst Evol Microbiol 2005; 55: 649– 653 [CrossRef] [PubMed]
    [Google Scholar]
  3. Choi DH, Yi H, Chun J, Cho BC. Jannaschia seosinensis sp. nov., isolated from hypersaline water of a solar saltern in Korea. Int J Syst Evol Microbiol 2006; 56: 45– 49 [CrossRef] [PubMed]
    [Google Scholar]
  4. Yoon JH, Kang SJ, Park S, Oh TK. Jannaschia donghaensis sp. nov., isolated from seawater of the East Sea, Korea. Int J Syst Evol Microbiol 2007; 57: 2132– 2136 [CrossRef] [PubMed]
    [Google Scholar]
  5. Kim BY, Yoo SH, Weon HY, Jeon YA, Hong SB et al. Jannaschia pohangensis sp. nov., isolated from seashore sand in Korea. Int J Syst Evol Microbiol 2008; 58: 496– 499 [CrossRef] [PubMed]
    [Google Scholar]
  6. Yoon JH, Kang SJ, Park S, Oh KH, Oh TK. Jannaschia seohaensis sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2010; 60: 191– 195 [CrossRef] [PubMed]
    [Google Scholar]
  7. Park S, Yoon JH. Jannaschia aquimarina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62: 2631– 2636 [CrossRef] [PubMed]
    [Google Scholar]
  8. Jung YT, Yoon JH. Jannaschia faecimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64: 945– 951 [CrossRef] [PubMed]
    [Google Scholar]
  9. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64: 2969– 2974 [CrossRef] [PubMed]
    [Google Scholar]
  10. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1– 67
    [Google Scholar]
  11. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51: 1997– 2006 [CrossRef] [PubMed]
    [Google Scholar]
  12. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993; [Crossref]
    [Google Scholar]
  13. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes Berlin: Springer; 1981; pp. 1302– 1331
    [Google Scholar]
  14. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957; 49: 25– 68 [CrossRef] [PubMed]
    [Google Scholar]
  15. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95: 1921– 1942 [PubMed]
    [Google Scholar]
  16. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996; 46: 502– 505 [CrossRef]
    [Google Scholar]
  17. Yoon J-H, Lee ST, Kim S-B, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47: 111– 114 [CrossRef]
    [Google Scholar]
  18. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH et al. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 2003; 53: 53– 57 [CrossRef] [PubMed]
    [Google Scholar]
  19. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  20. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  21. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  23. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp. 121– 161
    [Google Scholar]
  24. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  25. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  26. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002564
Loading
/content/journal/ijsem/10.1099/ijsem.0.002564
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error