1887

Abstract

A novel Gram-negative, rod shaped, non-motile bacterium, designated strain YK2, was isolated from yak milk from Leh, India. The strain was positive for oxidase- and catalase-activities and negative for starch hydrolysis, nitrate reduction, citrate utilization, urease, lysine decarboxylase and ornithine decarboxylase activities. The predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, iso-C17 : 1ω9c and C16 : 1 ω7c and/or C16 : 1ω6c and/or iso-C15 : 0 2-OH (summed feature 3). The major polar lipids were phosphatidylethanolamine, one unidentified aminophospholipid and six unidentified lipids. The DNA G+C content of the strain was 38.9 mol%. The 16S rRNA gene sequence analysis indicated that strain YK2 was a member of the genus Sphingobacterium and closely related to Sphingobacterium alimentarium and Sphingobacterium composti with pair-wise sequence similarity of 98.3 and 97.9 %, respectively. The sequence similarity to other members of the genus Sphingobacterium was between 92.6 to 96.3 %. Phylogenetic analysis showed that strain YK2 clustered with Sphingobacterium alimentarium and together clustered with Sphingobacterium composti . DNA–DNA hybridization of strain YK2 with Sphingobacterium alimentarium WCC 4521 and Sphingobacterium composti T5-12 showed a relatedness of only 38 and 54 %, respectively. Based on the phenotypic characteristics and on phylogenetic inference, it appears that strain YK2 represents a novel species of the genus Sphingobacterium , for which the name Sphingobacterium bovisgrunnientis sp. nov. is proposed. The type strain of Sphingobacterium bovisgrunnientis sp. nov. is YK2 (=MTCC 12631=KCTC 52685=JCM 31951).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002562
2018-01-08
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/2/636.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002562&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983; 33: 580– 598 [CrossRef]
    [Google Scholar]
  2. Wauters G, Janssens M, de Baere T, Vaneechoutte M, Deschaght P. Isolates belonging to CDC group II-i belong predominantly to Sphingobacterium mizutaii Yabuuchi et al. 1983: emended descriptions of S. mizutaii and of the genus Sphingobacterium. Int J Syst Evol Microbiol 2012; 62: 2598– 2601 [CrossRef] [PubMed]
    [Google Scholar]
  3. Euzéby JP. List of prokaryotic names with standing in nomenclature (LPSN). 2017; www.bacterio.net/sphingobacterium.html
  4. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996; 60: 407– 438 [PubMed]
    [Google Scholar]
  5. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1– 67
    [Google Scholar]
  6. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  7. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands Budapest DC. (editors) Methods in Phytobacteriology Hungry: Akademiai Kiado; 1990; pp. 199– 204
    [Google Scholar]
  8. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911– 917 [CrossRef] [PubMed]
    [Google Scholar]
  9. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 206 [Crossref]
    [Google Scholar]
  10. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3: 208– 218 [CrossRef]
    [Google Scholar]
  11. Sly LI, Blackall LL, Kraat PC, Tian-Shen T, Sangkhobol V. The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods 1986; 5: 139– 156 [Crossref]
    [Google Scholar]
  12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403– 410 [CrossRef] [PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  14. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  15. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512– 526 [PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  17. Nei M, Kumar S. Molecular Evolution and Phylogenetics NY: Oxford University Press; 2000
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  19. Loveland-Curtze J, Miteva VI, Brenchley JE. Evaluation of a new fluorimetric DNA–DNA hybridization method. Can J Microbiol 2011; 57: 250– 255 [CrossRef] [PubMed]
    [Google Scholar]
  20. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  21. Gillis M, de Ley J, de Cleene M. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 1970; 12: 143– 153 [CrossRef] [PubMed]
    [Google Scholar]
  22. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  23. Schmidt VS, Wenning M, Scherer S. Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 2012; 62: 1506– 1511 [CrossRef] [PubMed]
    [Google Scholar]
  24. Ten LN, Liu QM, Wt I, Aslam Z, Lee ST. Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. J Microbiol Biotechnol 2006; 16: 1728– 1733
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002562
Loading
/content/journal/ijsem/10.1099/ijsem.0.002562
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error