1887

Abstract

An isolate, designated SPSPC-11, with an optimum growth temperature of about 50 °C and an optimum pH for growth between 7.5 and 8.0, was recovered from a hot spring in central Portugal. Based on phylogenetic analysis of its 16S rRNA sequence, the new organism is most closely related to the species of the genus Thermonema but with a pairwise sequence similarity of <85 %. The isolate was orange-pigmented, formed non-motile long filaments and rod-shaped cells that stain Gram-negative. The organism was strictly aerobic, oxidase-positive and catalase-positive. The major fatty acids were iso-C15:0, iso-C15 : 0 2-OH and iso-C17 : 0 3-OH. The major polar lipids were one aminophospholipid, two aminolipids and three unidentified lipids. Menaquinone 7 was the major respiratory quinone. The DNA G+C content of strain SPSPC-11 was 37.6 mol% (draft genome sequence). The high quality draft genome sequence corroborated many of the phenotypic characteristics of strain SPSPC-11. Based on genotypic, phylogenetic, physiological and biochemical characterization we describe a new species of a novel genus represented by strain SPSPC-11 (=CECT 9012=LMG 29233) for which we propose the name Raineya orbicola gen. nov., sp. nov. We also describe the family Raineyaceae to accommodate this new genus and species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002556
2018-01-10
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/982.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002556&mimeType=html&fmt=ahah

References

  1. Nedashkovskaya OI, Suzuki M, Lee JS, Lee KC, Shevchenko LS et al. Pseudozobellia thermophila gen. nov., sp. nov., a bacterium of the family Flavobacteriaceae, isolated from the green alga Ulva fenestrata. Int J Syst Evol Microbiol 2009; 59: 806– 810 [CrossRef] [PubMed]
    [Google Scholar]
  2. Arun AB, Chen WM, Lai WA, Chou JH, Shen FT et al. Lutaonella thermophila gen. nov., sp. nov., a moderately thermophilic member of the family Flavobacteriaceae isolated from a coastal hot spring. Int J Syst Evol Microbiol 2009; 59: 2069– 2073 [CrossRef] [PubMed]
    [Google Scholar]
  3. Denger K, Warthmann R, Ludwig W, Schink B. Anaerophaga thermohalophila gen. nov., sp. nov., a moderately thermohalophilic, strictly anaerobic fermentative bacterium. Int J Syst Evol Microbiol 2002; 52: 173– 178 [CrossRef] [PubMed]
    [Google Scholar]
  4. Hudson JA, Schofield KM, Morgan HW, Daniel RM. Thermonema lapsum gen. nov., sp. nov., a Thermophilic Gliding Bacterium. Int J Syst Bacteriol 1989; 39: 485– 487 [CrossRef]
    [Google Scholar]
  5. Tenreiro S, Nobre MF, Rainey FA, Miguel C, da Costa MS. Thermonema rossianum sp. nov., a new thermophilic and slightly halophilic species from saline hot springs in Naples, Italy. Int J Syst Bacteriol 1997; 47: 122– 126 [CrossRef] [PubMed]
    [Google Scholar]
  6. Alfredsson GA, Kristjansson JK, Hjörleifsdottir S, Stetter KO. Rhodothermus marinus gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J Gen Microbiol 1988; 134: 299– 306
    [Google Scholar]
  7. Nunes OC, Manaia CM, da Costa MS, Santos H. Compatible solutes in the thermophilic bacteria Rhodotermus marinus and “Thermus thermophiles”. Appl Environm Microbiol 2000; 61: 2351– 2357
    [Google Scholar]
  8. Silva Z, Horat C, da Costa MS, Chung AP, Rainey FA. Polyphasic evidence for the reclassification of Rhodothermus obamensis Sako et al., 1996 as a member of the species Rhodotermus marinus Alfredsson et al., 1998. Int J Syst Evol Bacteriol 2000: 1457– 1461
    [Google Scholar]
  9. Marteinsson VT, Bjornsdottir SH, Bienvenu N, Kristjansson JK, Birrien JL. Rhodothermus profundi sp. nov., a thermophilic bacterium isolated from a deep-sea hydrothermal vent in the Pacific Ocean. Int J Syst Evol Microbiol 2010; 60: 2729– 2734 [CrossRef] [PubMed]
    [Google Scholar]
  10. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016; 39: 281– 296 [CrossRef] [PubMed]
    [Google Scholar]
  11. Albuquerque L, da Costa MS. Family Thermaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes-Other Major Lineages of Bacteria and The Archaea, 4th ed. Berlin Heidelberg: Springer-Verlag; 2014; pp. 955– 987
    [Google Scholar]
  12. Albuquerque L, Tiago I, Nobre MF, Veríssimo A, da Costa MS. Cecembia calidifontis sp. nov., isolated from a hot spring runoff, and emended description of the genus Cecembia. Int J Syst Evol Microbiol 2013; 63: 1431– 1436 [CrossRef] [PubMed]
    [Google Scholar]
  13. Smibert RM, Krieg NR. General characterization. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp. 409– 442
    [Google Scholar]
  14. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Bacteriol 2002; 52: 1049– 1070
    [Google Scholar]
  15. Sharp RJ, Williams RA. Properties of Thermus ruber Strains Isolated from Icelandic Hot Springs and DNA:DNA Homology of Thermus ruber and Thermus aquaticus. Appl Environ Microbiol 1988; 54: 2049– 2053 [PubMed]
    [Google Scholar]
  16. da Costa MS, Albuquerque L, Nobre MF, Wait R. The identification of polar lipids in prokaryotes. In Rainey FA, Oren A. (editors) Methods in Microbiology (Taxonomy of Prokaryotes)vol. 38 London: Elsevier Ltd; 2011; pp. 165– 181
    [Google Scholar]
  17. da Costa MS, Albuquerque L, Nobre MF, Wait R. The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. In Rainey FA, Oren A. (editors) Methods in Microbiology (Taxonomy of Prokaryotes)vol. 38 London: Elsevier Ltd; 2011; pp. 197– 206
    [Google Scholar]
  18. da Costa MS, Albuquerque L, Nobre MF, Wait R. The identification of fatty acids in bacteria. In Rainey FA, Oren A. (editors) Methods in Microbiology (Taxonomy of Prokaryotes)vol. 38 London: Elsevier Ltd; 2011; pp. 183– 196
    [Google Scholar]
  19. Nielsen P, Fritze D, Priest FG. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 1995; 141: 1745– 1761 [CrossRef]
    [Google Scholar]
  20. Mesbah M, Premachandran U, Whitman WB. Precise Measurement of the G+C Content of Deoxyribonucleic Acid by High-Performance Liquid Chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  21. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996; 46: 1088– 1092 [CrossRef] [PubMed]
    [Google Scholar]
  22. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30: 2114– 2120 [CrossRef] [PubMed]
    [Google Scholar]
  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19: 455– 477 [CrossRef] [PubMed]
    [Google Scholar]
  24. Egas C, Barroso C, Froufe HJ, Pacheco J, Albuquerque L et al. Complete genome sequence of the Radiation-Resistant bacterium Rubrobacter radiotolerans RSPS-4. Stand Genomic Sci 2014; 9: 1062– 1075 [CrossRef] [PubMed]
    [Google Scholar]
  25. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25: 1043– 1055 [CrossRef] [PubMed]
    [Google Scholar]
  26. Lagesen K, Hallin PF, Rødland E, Stærfeldt HH, Rognes T et al. RNAmmer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res 2007; 35: 3100– 3108 [Crossref]
    [Google Scholar]
  27. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010; 26: 2460– 2461 [CrossRef] [PubMed]
    [Google Scholar]
  28. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9: 357– 359 [CrossRef] [PubMed]
    [Google Scholar]
  29. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79: 7696– 7701 [CrossRef] [PubMed]
    [Google Scholar]
  30. Xie C, Mao X, Huang J, Ding Y, Wu J et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 2011; 39: W316– W322 [CrossRef] [PubMed]
    [Google Scholar]
  31. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  32. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-Based Taxonomic Classification of Bacteroidetes. Front Microbiol 2016; 7: 1– 37 [CrossRef] [PubMed]
    [Google Scholar]
  33. Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P et al. Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol 2010; 76: 3886– 3897 [CrossRef] [PubMed]
    [Google Scholar]
  34. Sun DL, Jiang X, Wu QL, Zhou NY. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol 2013; 79: 5962– 5969 [CrossRef] [PubMed]
    [Google Scholar]
  35. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21: 374– 383 [CrossRef] [PubMed]
    [Google Scholar]
  36. Larkin JM. Nonphotosynthetic, nonfruiting gliding bacteria. In Staley JT, Bryant MP, Pfennig N, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 3 Baltimore, MD: Williams and Wilkins; 1989; pp. 2010– 2138
    [Google Scholar]
  37. Varel VH, Bryant MP. Nutritional features of Bacteroides fragilis subsp. fragilis. Appl Microbiol 1974; 28: 251– 257 [PubMed]
    [Google Scholar]
  38. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. J Mol Evol 1980; 16: 111– 120 [Crossref]
    [Google Scholar]
  39. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  40. Field D, Garrity G, Gray T, Morrison N, Selengut J et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26: 541– 547 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002556
Loading
/content/journal/ijsem/10.1099/ijsem.0.002556
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error