sp. nov., isolated from a tidal flat Free

Abstract

A Gram-stain-negative, facultatively aerobic, motile-by-gliding, non-flagellated and rod-shaped bacterial strain, designated YSM-43, was isolated from a tidal flat in Yeosu on the South Sea in the Republic of Korea. Strain YSM-43 grew optimally at 30 °C and in the presence of 1.0–2.0 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain YSM-43 fell within the clade comprising type strains of species, clustering with the type strains of and . It exhibited 16S rRNA gene sequence similarity values of 97.20 and 97.15 % to the type strains of and , respectively, and of less than 96.59 % to the type strains of the other species. Strain YSM-43 contained menaquinone-6 as the predominant menaquinone and iso-C, iso-C 3-OH, iso-C G and iso-C 3-OH as the major fatty acids. The major polar lipids were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain YSM-43 was 29.8 mol% and its DNA–DNA relatedness values with type strains of and were 13 and 11 %, respectively. The differential phenotypic properties, together with the phylogenetic and genetic data, revealed that strain YSM-43 is separate from other recognized species of the genus . On the basis of the data presented, strain YSM-43 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YSM-43 (=KACC 19435=KCTC 62142=NBRC 113020).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002555
2018-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/2/630.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002555&mimeType=html&fmt=ahah

References

  1. Bernardet JF. Family I. Flavobacteriaceae Reichenbach 1992. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 New York: Springer; 2011 pp. 106–111
    [Google Scholar]
  2. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Genus II. Flavobacterium gen. nov. Bergey’s Manual of Determinative Bacteriology, 1st ed. vol. 4 Baltimore: Williams and Wilkins; 1923 pp. 97–117
    [Google Scholar]
  3. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  4. Shin SK, Ha Y, Cho YJ, Kwon S, Yong D et al. Flavobacterium gilvum sp. nov., isolated from stream water. Int J Syst Evol Microbiol 2016; 67:153–157 [View Article][PubMed]
    [Google Scholar]
  5. Moya G, Yan ZF, Trinh H, Won KH, Yang JE et al. Flavobacterium hibisci sp. nov., isolated from the rhizosphere of Hibiscus syriacus L. Int J Syst Evol Microbiol 2017; 67:537–542 [View Article][PubMed]
    [Google Scholar]
  6. Liu H, Lu P, Zhu G. Flavobacterium cloacae sp. nov., isolated from waste water. Int J Syst Evol Microbiol 2017; 67:659–663 [View Article][PubMed]
    [Google Scholar]
  7. Choi S, Shin SK, Kim E, Yi H. Flavobacterium crassostreae sp. nov., isolated from Pacific oyster. Int J Syst Evol Microbiol 2017; 67:988–992 [View Article][PubMed]
    [Google Scholar]
  8. Li DD, Liu C, Zhang YQ, Wang XJ, Wang N et al. Flavobacterium arcticum sp. nov., isolated from Arctic seawater. Int J Syst Evol Microbiol 2017; 67:1070–1074 [View Article][PubMed]
    [Google Scholar]
  9. Ekwe AP, Ahn JH, Kim SB. Flavobacterium keumense sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2017; 67:2166–2170 [View Article][PubMed]
    [Google Scholar]
  10. Chaudhary DK, Kim J. Flavobacterium olei sp. nov., a novel psychrotolerant bacterium isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017; 67:2211–2218 [View Article][PubMed]
    [Google Scholar]
  11. Nam GG, Joung Y, Park M, Kim S, Jeon HT et al. Flavobacterium soyangense sp. nov., a psychrotolerant bacterium, isolated from an oligotrophic freshwater lake. Int J Syst Evol Microbiol 2017; 67:2440–2445 [View Article][PubMed]
    [Google Scholar]
  12. Dahal RH, Chaudhary DK, Kim J. Flavobacterium flaviflagrans sp. nov., a bacterium of the family Flavobacteriaceae isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:2653–2659 [View Article][PubMed]
    [Google Scholar]
  13. Ahn JH, Kim TW, Kim TS, Joung Y, Kim SB. Flavobacterium fluminis sp. nov. to accommodate an aerobic, halotolerant and gliding flavobacterium isolated from freshwater. Int J Syst Evol Microbiol 2017; 67:3117–3121 [View Article][PubMed]
    [Google Scholar]
  14. Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. Flavobacterium gossypii sp. nov. isolated from the root tissue of field-grown cotton. Int J Syst Evol Microbiol 2017; 67:3345–3350 [View Article][PubMed]
    [Google Scholar]
  15. Liu H, Lu P, Jin L, Zhu G. Flavobacterium luticocti sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2017; 67:659–663 [View Article][PubMed]
    [Google Scholar]
  16. Park S, Ha MJ, Jung YT, Yoon JH. Litorisediminivivens gilvus gen. nov., sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:4681–4685 [View Article][PubMed]
    [Google Scholar]
  17. Park S, Jung YT, Yoon JH. Colwellia sediminilitoris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:3258–3263 [View Article][PubMed]
    [Google Scholar]
  18. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [View Article][PubMed]
    [Google Scholar]
  19. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  20. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  21. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  22. Barrow GI, Cowan FRKA. Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993 [Crossref]
    [Google Scholar]
  23. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  24. Reichenbach H. The order Cytophagales . In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. New York: Springer; 1992 pp. 3631–3675
    [Google Scholar]
  25. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184[PubMed]
    [Google Scholar]
  26. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996; 46:502–505 [View Article]
    [Google Scholar]
  27. Yoon J-H, Lee ST, Kim S-B, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47:111–114 [View Article]
    [Google Scholar]
  28. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH et al. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 2003; 53:53–57 [View Article][PubMed]
    [Google Scholar]
  29. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  30. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207 [Crossref]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  33. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley and Sons; 1994 pp. 121–161
    [Google Scholar]
  34. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  35. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  36. Dong K, Chen F, Du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense . Int J Syst Evol Microbiol 2013; 63:886–892 [View Article][PubMed]
    [Google Scholar]
  37. Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium . Int J Syst Evol Microbiol 2013; 63:1633–1638 [View Article][PubMed]
    [Google Scholar]
  38. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  39. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  40. Romanenko LA, Tanaka N, Svetashev VI, Kurilenko VV, Mikhailov VV. Flavobacterium maris sp. nov. isolated from shallow sediments of the Sea of Japan. Arch Microbiol 2015; 197:941–947 [View Article][PubMed]
    [Google Scholar]
  41. Nedashkovskaya OI, Balabanova LA, Zhukova NV, Kim SJ, Bakunina IY et al. Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga. Arch Microbiol 2014; 196:745–752 [View Article][PubMed]
    [Google Scholar]
  42. Park SH, Kim JY, Kim YJ, Heo MS. Flavobacterium jejuensis sp. nov., isolated from marine brown alga Ecklonia cava . J Microbiol 2015; 53:756–761 [View Article][PubMed]
    [Google Scholar]
  43. Joung Y, Kim H, Joh K. Flavobacterium jumunjinense sp. nov., isolated from a lagoon, and emended descriptions of Flavobacterium cheniae, Flavobacterium dongtanense and Flavobacterium gelidilacus . Int J Syst Evol Microbiol 2013; 63:3937–3943 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002555
Loading
/content/journal/ijsem/10.1099/ijsem.0.002555
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed