1887

Abstract

A cream-coloured, Gram-stain-negative, non-motile and rod-shaped bacterium, designated strain Brt-F, was isolated from oil-contaminated soil. Strain Brt-F was able to grow from 15 to 45 °C, pH 6.5–10.5 and 0–4.5 % (w/v) NaCl concentration. This strain was taxonomically characterized by a polyphasic approach. Based on 16S rRNA gene sequence analysis, strain Brt-F represented a member of the genus and shared highest sequence similarity with DH-5 (99.4 %); H7 (95.7 %) and H-12 (94.3 %). The only respiratory quinone was menaquinone-7, the major polar lipid was phosphatidylethanolamine and the predominant fatty acids were summed feature 3 (Cω7 and/or Cω6), -C, and -C 3-OH. The DNA G+C content was 43.4 mol%. The DNA–DNA relatedness value between strain Brt-F and KCTC 42746 was 35.7 %, which falls below the threshold value of 70 % for the strain to be considered as novel. The morphological, physiological, chemotaxonomic and phylogenetic analyses clearly distinguished this strain from its closest phylogenetic neighbours. Thus, strain Brt-F represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Brt-F (=KEMB 9005-691=KACC 19392=JCM 32159).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002552
2018-02-01
2024-11-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/2/609.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002552&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983; 33:580–598 [View Article]
    [Google Scholar]
  2. Lee Y, Jin HM, Jung HS, Jeon CO. Sphingobacterium humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 2017; 67:4632–4638 [View Article][PubMed]
    [Google Scholar]
  3. Zhou XK, Li QQ, Mo MH, Zhang YG, Dong LM et al. Sphingobacterium tabacisoli sp. nov., isolated from a tobacco field soil sample. Int J Syst Evol Microbiol 2017; 67:4808–4813 [View Article][PubMed]
    [Google Scholar]
  4. Wang X, Zhang CF, Yu X, Hu G, Yang HX et al. Sphingobacterium chuzhouense sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2016; 66:4968–4974 [View Article][PubMed]
    [Google Scholar]
  5. Zhao P, Zhou Z, Chen M, Lin W, Zhang W et al. Sphingobacterium gobiense sp. nov., isolated from soil of the Gobi Desert. Int J Syst Evol Microbiol 2014; 64:3931–3935 [View Article][PubMed]
    [Google Scholar]
  6. Jiang S, Chen M, Su S, Yang M, Li A et al. Sphingobacterium arenae sp. nov., isolated from sandy soil. Int J Syst Evol Microbiol 2014; 64:248–253 [View Article][PubMed]
    [Google Scholar]
  7. Chaudhary DK, Kim J. Novosphingobium naphthae sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2016; 66:3170–3176 [View Article][PubMed]
    [Google Scholar]
  8. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  9. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article][PubMed]
    [Google Scholar]
  10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  12. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  19. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article][PubMed]
    [Google Scholar]
  20. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P. (editor) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981 pp. 21–33
    [Google Scholar]
  21. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 309–329
    [Google Scholar]
  22. Chaudhary DK, Kim J. Arvibacter flaviflagrans gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:4347–4354 [View Article][PubMed]
    [Google Scholar]
  23. Hemraj V, Diksha S, Avneet G. A review on commonly used biochemical test for bacteria. Innovare J Life Sci 2013; 1:1–7
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  25. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354[PubMed]
    [Google Scholar]
  26. Komagata K, Suzuki K. Lipids and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–203 [Crossref]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  28. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  29. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  30. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.002552
Loading
/content/journal/ijsem/10.1099/ijsem.0.002552
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error