1887

Abstract

In our previous study based on PCR-restriction fragment length polymorphism and 16S rRNA gene sequencing, we stated that the bifidobacterial strains isolated from the individual faecal samples of five baby common marmosets constituted different phylogenetically isolated groups of the genus . In that study, we also proposed that these isolated groups potentially represented novel species of the genus . Out of them, , , and , have been described recently. Another strain, designated MRM 8.19, has been classified as member of the genus on the basis of positive results for fructose-6-phosphate phosphoketolase activity and analysis of partial 16S rRNA, , , , and gene sequences. Analysis of 16S rRNA and gene sequences revealed that strain MRM 8.19 was related to DSM 100201 (95.8 %) and to ATCC 29521 (93.7 %), respectively. The DNA G+C composition was 63.7 mol% and the peptidoglycan structure was -Orn(Lys)–-Ser. Based on the phylogenetic, genotypic and phenotypic data reported, strain MRM 8.19 represents a novel taxon within the genus for which the name sp. nov. (type strain MRM 8.19=DSM 103154=JCM 31794) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002545
2018-02-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/2/575.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002545&mimeType=html&fmt=ahah

References

  1. Ventura M, van Sinderen D, Fitzgerald GF, Zink R. Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie van Leeuwenhoek 2004;86:205–223 [CrossRef][PubMed]
    [Google Scholar]
  2. Ventura M, Turroni F, Lugli GA, van Sinderen D. Bifidobacteria and humans: our special friends, from ecological to genomics perspectives. J Sci Food Agric 2014;94:163–168 [CrossRef][PubMed]
    [Google Scholar]
  3. Killer J, Kopečný J, Mrázek J, Koppová I, Havlík J et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2011;61:1315–1321 [CrossRef][PubMed]
    [Google Scholar]
  4. Killer J, Kopecný J, Mrázek J, Rada V, Benada O et al. Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2009;59:2020–2024 [CrossRef][PubMed]
    [Google Scholar]
  5. Kopecný J, Mrázek J, Killer J. The presence of bifidobacteria in social insects, fish and reptiles. Folia Microbiol 2010;55:336–339 [CrossRef][PubMed]
    [Google Scholar]
  6. Praet J, Meeus I, Cnockaert M, Aerts M, Smagghe G et al. Bifidobacterium commune sp. nov. isolated from the bumble bee gut. Antonie van Leeuwenhoek 2015;107:1307–1313 [CrossRef][PubMed]
    [Google Scholar]
  7. Okamoto M, Benno Y, Leung KP, Maeda N. Bifidobacterium tsurumiense sp. nov., from hamster dental plaque. Int J Syst Evol Microbiol 2008;58:144–148 [CrossRef][PubMed]
    [Google Scholar]
  8. Biavati B, Mattarelli P. Genus Bifidobacterium. In Goodfellow M, Kampfer P, Busse HJ, Suzuki KI, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 5 New York: Springer; 2012; pp.176–206
    [Google Scholar]
  9. Michelini S, Oki K, Yanokura E, Shimakawa Y, Modesto M et al. Bifidobacterium myosotis sp. nov., Bifidobacterium tissieri sp. nov. and Bifidobacterium hapali sp. nov., isolated from faeces of baby common marmosets (Callithrix jacchus L.). Int J Syst Evol Microbiol 2016;66:255–265 [CrossRef][PubMed]
    [Google Scholar]
  10. Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S. Probiotics: mechanisms and established effects. Int Dairy J 1999;9:43–52 [CrossRef]
    [Google Scholar]
  11. Turroni F, Ribbera A, Foroni E, van Sinderen D, Ventura M. Human gut microbiota and bifidobacteria: from composition to functionality. Antonie van Leeuwenhoek 2008;94:35–50 [CrossRef][PubMed]
    [Google Scholar]
  12. Bunesova V, Vlkova E, Rada V, Killer J, Kmet V. Identification of bifidobacteria isolated from Asian elephant (Elephas maximus). J Biosci 2013;38:239–243 [CrossRef][PubMed]
    [Google Scholar]
  13. Endo A, Futagawa-Endo Y, Schumann P, Pukall R, Dicks LM. Bifidobacterium reuteri sp. nov., Bifidobacterium callitrichos sp. nov., Bifidobacterium saguini sp. nov., Bifidobacterium stellenboschense sp. nov. and Bifidobacterium biavatii sp. nov. isolated from faeces of common marmoset (Callithrix jacchus) and red-handed tamarin (Saguinus midas). Syst Appl Microbiol 2012;35:92–97 [CrossRef][PubMed]
    [Google Scholar]
  14. Modesto M, Michelini S, Stefanini I, Ferrara A, Tacconi S et al. Bifidobacterium aesculapii sp. nov., from the faeces of the baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol 2014;64:2819–2827 [CrossRef][PubMed]
    [Google Scholar]
  15. Michelini S, Modesto M, Oki K, Stenico V, Stefanini I et al. Isolation and identification of cultivable Bifidobacterium spp. from the faeces of 5 baby common marmosets (Callithrix jacchus L.). Anaerobe 2015;33:101–104 [CrossRef][PubMed]
    [Google Scholar]
  16. Michelini S, Modesto M, Filippini G, Spiezio C, Sandri C et al. Bifidobacterium aerophilum sp. nov., Bifidobacterium avesanii sp. nov. and Bifidobacterium ramosum sp. nov.: three novel taxa from the faeces of cotton-top tamarin (Saguinus oedipus L.). Syst Appl Microbiol 2016;39:229–236 [CrossRef][PubMed]
    [Google Scholar]
  17. Cavalli-Sforza LL, Edwards AWF. Phylogenetic analysis. Models and estimation procedures. Evolution 1967;21:550–570 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  21. Martens M, Dawyndt P, Coopman R, Gillis M, de Vos P et al. Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 2008;58:200–214 [CrossRef][PubMed]
    [Google Scholar]
  22. Jian W, Zhu L, Dong X. New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences. Int J Syst Evol Microbiol 2001;51:1633–1638 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim BJ, Kim HY, Yun YJ, Kim BJ, Kook YH. Differentiation of Bifidobacterium species using partial RNA polymerase β-subunit (rpoB) gene sequences. Int J Syst Evol Microbiol 2010;60:2697–2704 [CrossRef][PubMed]
    [Google Scholar]
  24. Ventura M, Canchaya C, del Casale A, Dellaglio F, Neviani E et al. Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 2006;56:2783–2792 [CrossRef][PubMed]
    [Google Scholar]
  25. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  26. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007;56:564–577 [CrossRef][PubMed]
    [Google Scholar]
  27. Cashion P, Holder-Franklin MA, McCully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977;81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  28. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  29. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  30. Killer J, Kopečný J, Mrázek J, Havlík J, Koppová I et al. Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. Syst Appl Microbiol 2010;33:359–366 [CrossRef][PubMed]
    [Google Scholar]
  31. Pineiro M, Stanton C. Probiotic bacteria: legislative framework–requirements to evidence basis. J Nutr 2007;137:850S–853S[PubMed][Crossref]
    [Google Scholar]
  32. Modesto M, Michelini S, Stefanini I, Sandri C, Spiezio C et al. Bifidobacterium lemurum sp. nov., from faeces of the ring-tailed lemur (Lemur catta). Int J Syst Evol Microbiol 2015;65:1726–1734 [CrossRef][PubMed]
    [Google Scholar]
  33. Orban JI, Patterson JA. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J Microbiol Methods 2000;40:221–224 [CrossRef][PubMed]
    [Google Scholar]
  34. Schumann P. Peptidoglycan structure. In Taxonomy of Procaryotes pp.101–129
    [Google Scholar]
  35. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. 2007;330–393
  36. Mattarelli P, Holzapfel W, Franz CM, Endo A, Felis GE et al. Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 2014;64:1434–1451 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002545
Loading
/content/journal/ijsem/10.1099/ijsem.0.002545
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error