1887

Abstract

The Erwiniaceae contain many species of agricultural and clinical importance. Although relationships among most of the genera in this family are relatively well resolved, the phylogenetic placement of several taxa remains ambiguous. In this study, we aimed to address these uncertainties by using a combination of phylogenetic and genomic approaches. Our multilocus sequence analysis and genome-based maximum-likelihood phylogenies revealed that the arsenate-reducing strain IMH and plant-associated strain ATCC 700886, both previously presumptively identified as members of Pantoea , represent novel species of Erwinia . Our data also showed that the taxonomy of Erwinia teleogrylli requires revision as it is clearly excluded from Erwinia and the other genera of the family. Most strikingly, however, five species of Pantoea formed a distinct clade within the Erwiniaceae , where it had a sister group relationship with the Pantoea + Tatumella  clade. By making use of gene content comparisons, this new clade is further predicted to encode a range of characters that it shares with or distinguishes it from related genera. We thus propose recognition of this clade as a distinct genus and suggest the name Mixta in reference to the diverse habitats from which its species were obtained, including plants, humans and food products. Accordingly, a description for Mixta gen. nov. is provided to accommodate the four species Mixta calida comb. nov., M. gaviniae comb. nov., M. intestinalis comb. nov. and M. theicola comb. nov., with M. calida as the type species for the genus.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002540
2018-02-27
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1396.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002540&mimeType=html&fmt=ahah

References

  1. Adeolu M, Alnajar S, Naushad S, Gupta RS. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66: 5575– 5599 [CrossRef] [PubMed]
    [Google Scholar]
  2. Winslow CE, Broadhurst J, Buchanan RE, Krumwiede C, Rogers LA et al. The families and genera of the bacteria: final report of the committee of the Society of American Bacteriologists on characterization and classification of bacterial types. J Bacteriol 1920; 5: 191– 229 [PubMed]
    [Google Scholar]
  3. Hauben L, Moore ER, Vauterin L, Steenackers M, Mergaert J et al. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 1998; 21: 384– 397 [CrossRef] [PubMed]
    [Google Scholar]
  4. Skerman VBD, Sneath PHA, McGowan V. Approved lists of bacterial names. Int J Syst Evol Microbiol 1980; 30: 225– 420 [CrossRef]
    [Google Scholar]
  5. Burrill TJ. New species of Micrococcus (bacteria). Am Nat 1883; 17: 319– 320
    [Google Scholar]
  6. Rezzonico F, Smits THM, Born Y, Blom J, Frey JE et al. Erwinia gerundensis sp. nov., a cosmopolitan epiphyte originally isolated from pome fruit trees. Int J Syst Evol Microbiol 2016; 66: 1583– 1592 [CrossRef]
    [Google Scholar]
  7. Smits TH, Rezzonico F, López MM, Blom J, Goesmann A et al. Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics. Syst Appl Microbiol 2013; 36: 449– 456 [CrossRef] [PubMed]
    [Google Scholar]
  8. Gardan L, Christen R, Achouak W, Prior P. Erwinia papayae sp. nov., a pathogen of papaya (Carica papaya). Int J Syst Evol Microbiol 2004; 54: 107– 113 [CrossRef] [PubMed]
    [Google Scholar]
  9. Mergaert J, Hauben L, Cnockaert MC, Swings J. Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia billingiae sp. nov. Int J Syst Bacteriol 1999; 49: 377– 383 [CrossRef]
    [Google Scholar]
  10. Kim W-S, Gardan L, Rhim S-L, Geider K. Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai). Int J Syst Evol Microbiol 1999; 49: 899– 906
    [Google Scholar]
  11. Goto M. Erwinia mallotivora nov., the causal organism of bacterial leaf spot of Mallotus japonicus Muell. Arg. Int J Syst Evol Microbiol 1976; 26: 467– 473
    [Google Scholar]
  12. Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D et al. Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 1989; 39: 337– 345 [CrossRef]
    [Google Scholar]
  13. Ma Y, Yin Y, Rong C, Chen S, Liu Y et al. Pantoea pleuroti sp. nov., isolated from the fruiting bodies of Pleurotus eryngii. Curr Microbiol 2016; 72: 207– 212 [CrossRef] [PubMed]
    [Google Scholar]
  14. Rong C, Ma Y, Wang S, Liu Y, Chen S et al. Pantoea hericii sp. nov., isolated from the fruiting bodies of Hericium erinaceus. Curr Microbiol 2016; 72: 738– 743 [CrossRef] [PubMed]
    [Google Scholar]
  15. Palmer M, de Maayer P, Poulsen M, Steenkamp ET, van Zyl E et al. Draft genome sequences of Pantoea agglomerans and Pantoea vagans isolates associated with termites. Stand Genomic Sci 2016; 11: 1– 11 [CrossRef] [PubMed]
    [Google Scholar]
  16. Brady CL, Cleenwerck I, van der Westhuizen L, Venter SN, Coutinho TA et al. Pantoea rodasii sp. nov., Pantoea rwandensis sp. nov. and Pantoea wallisii sp. nov., isolated from Eucalyptus. Int J Syst Evol Microbiol 2012; 62: 1457– 1464 [CrossRef] [PubMed]
    [Google Scholar]
  17. Brady CL, Goszczynska T, Venter SN, Cleenwerck I, de Vos P et al. Pantoea allii sp. nov., isolated from onion plants and seed. Int J Syst Evol Microbiol 2011; 61: 932– 937 [CrossRef] [PubMed]
    [Google Scholar]
  18. Brady CL, Cleenwerck I, Venter SN, Engelbeen K, de Vos P et al. Emended description of the genus Pantoea, description of four species from human clinical samples, Pantoea septica sp. nov., Pantoea eucrina sp. nov., Pantoea brenneri sp. nov. and Pantoea conspicua sp. nov., and transfer of Pectobacterium cypripedii (Hori 1911) Brenner et al. 1973 emend. Hauben et al. 1998 to the genus as Pantoea cypripedii comb. nov. Int J Syst Evol Microbiol 2010; 60: 2430– 2440 [CrossRef] [PubMed]
    [Google Scholar]
  19. Prakash O, Nimonkar Y, Vaishampayan A, Mishra M, Kumbhare S et al. Pantoea intestinalis sp. nov., isolated from the human gut. Int J Syst Evol Microbiol 2015; 65: 3352– 3358 [CrossRef] [PubMed]
    [Google Scholar]
  20. Chen C, Xin K, Liu H, Cheng J, Shen X et al. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 2017; 7: 41564 [CrossRef] [PubMed]
    [Google Scholar]
  21. Hollis DG, Hickman FW, Fanning GR, Farmer JJ, Weaver RE et al. Tatumella ptyseos gen. nov., sp. nov., a member of the family Enterobacteriaceae found in clinical specimens. J Clin Microbiol 1981; 14: 79– 88 [PubMed]
    [Google Scholar]
  22. Brady CL, Venter SN, Cleenwerck I, Vandemeulebroecke K, de Vos P et al. Transfer of Pantoea citrea, Pantoea punctata and Pantoea terrea to the genus Tatumella emend. as Tatumella citrea comb. nov., Tatumella punctata comb. nov. and Tatumella terrea comb. nov. and description of Tatumella morbirosei sp. nov. Int J Syst Evol Microbiol 2010; 60: 484– 494 [CrossRef] [PubMed]
    [Google Scholar]
  23. Tracz DM, Gilmour MW, Mabon P, Beniac DR, Hoang L et al. Tatumella saanichensis sp. nov., isolated from a cystic fibrosis patient. Int J Syst Evol Microbiol 2015; 65: 1959– 1966 [CrossRef] [PubMed]
    [Google Scholar]
  24. Brady C, Cleenwerck I, Venter S, Vancanneyt M, Swings J et al. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst Appl Microbiol 2008; 31: 447– 460 [CrossRef] [PubMed]
    [Google Scholar]
  25. Kamber T, Smits THM, Rezzonico F, Duffy B. Genomics and current genetic understanding of Erwinia amylovora and the fire blight antagonist Pantoea vagans. Trees 2012; 26: 227– 238 [CrossRef]
    [Google Scholar]
  26. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015; 38: 237– 245 [CrossRef] [PubMed]
    [Google Scholar]
  27. Gueule D, Fourny G, Ageron E, Le Flèche-Matéos A, Vandenbogaert M et al. Pantoea coffeiphila sp. nov., cause of the 'potato taste' of Arabica coffee from the African Great Lakes region. Int J Syst Evol Microbiol 2015; 65: 23– 29 [CrossRef] [PubMed]
    [Google Scholar]
  28. Palmer M, Steenkamp ET, Coetzee MPA, Chan WY, van Zyl E et al. Phylogenomic resolution of the bacterial genus Pantoea and its relationship with Erwinia and Tatumella. Antonie van Leeuwenhoek 2017; 110: 1287– 1309 [CrossRef] [PubMed]
    [Google Scholar]
  29. Rezzonico F, Smits TH, Montesinos E, Frey JE, Duffy B. Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol 2009; 9: 204 [CrossRef] [PubMed]
    [Google Scholar]
  30. Tambong JT, Xu R, Kaneza CA, Nshogozabahizi JC. An in-depth analysis of a multilocus phylogeny identifies leus as a reliable phylogenetic marker for the genus Pantoea. Evol Bioinform Online 2014; 10: 115– 125 [CrossRef] [PubMed]
    [Google Scholar]
  31. Moretti C, Hosni T, Vandemeulebroecke K, Brady C, de Vos P et al. Erwinia oleae sp. nov., isolated from olive knots caused by Pseudomonas savastanoi pv. savastanoi. Int J Syst Evol Microbiol 2011; 61: 2745– 2752 [CrossRef] [PubMed]
    [Google Scholar]
  32. Skrodenyte-Arbaciauskiene V, Radziute S, Stunzenas V, Būda V. Erwinia typographi sp. nov., isolated from bark beetle (Ips typographus) gut. Int J Syst Evol Microbiol 2012; 62: 942– 948 [CrossRef] [PubMed]
    [Google Scholar]
  33. Garrity GM, Bell JA, Lilburn T. The revised road map to the manual. Bergey’s Manual® of Systematic Bacteriology Springer; 2005; pp. 159– 187 [Crossref]
    [Google Scholar]
  34. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T et al. Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol 2005; 3: 733– 739 [CrossRef] [PubMed]
    [Google Scholar]
  35. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10: 504– 509 [CrossRef] [PubMed]
    [Google Scholar]
  36. Jeffroy O, Brinkmann H, Delsuc F, Philippe H. Phylogenomics: the beginning of incongruence?. Trends Genet 2006; 22: 225– 231 [CrossRef] [PubMed]
    [Google Scholar]
  37. Heath TA, Hedtke SM, Hillis DM. Taxon sampling and the accuracy of phylogenetic analyses. J Syst Evol 2008; 46: 239– 257
    [Google Scholar]
  38. Philippe H, Brinkmann H, Lavrov DV, Littlewood DT, Manuel M et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 2011; 9: e1000602 [CrossRef] [PubMed]
    [Google Scholar]
  39. Zwickl DJ, Hillis DM. Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 2002; 51: 588– 598 [CrossRef] [PubMed]
    [Google Scholar]
  40. Hillis DM. Taxonomic sampling, phylogenetic accuracy, and investigator bias. Syst Biol 1998; 47: 3– 8 [CrossRef] [PubMed]
    [Google Scholar]
  41. Mitchell A, Mitter C, Regier JC. More taxa or more characters revisited: combining data from nuclear protein-encoding genes for phylogenetic analyses of Noctuoidea (Insecta: Lepidoptera). Syst Biol 2000; 49: 202– 224 [CrossRef] [PubMed]
    [Google Scholar]
  42. Kato Tanaka Y, Horie N, Mochida K, Yoshida Y, Okugawa E et al. Pantoea theicola sp. nov., isolated from black tea. Int J Syst Evol Microbiol 2015; 65: 3313– 3319 [CrossRef] [PubMed]
    [Google Scholar]
  43. Steenkamp ET, van Zyl E, Beukes CW, Avontuur JR, Chan WY et al. Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa. Syst Appl Microbiol 2015; 38: 545– 554 [CrossRef] [PubMed]
    [Google Scholar]
  44. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44: W22– W28 [CrossRef] [PubMed]
    [Google Scholar]
  45. Hall T. BioEdit: an important software for molecular biology. GERF Bull Biosci 2011; 2: 60– 61
    [Google Scholar]
  46. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30: 772– 780 [CrossRef] [PubMed]
    [Google Scholar]
  47. Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool 2014; 11: 81 [CrossRef] [PubMed]
    [Google Scholar]
  48. Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005; 21: 2104– 2105 [CrossRef] [PubMed]
    [Google Scholar]
  49. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312– 1313 [CrossRef] [PubMed]
    [Google Scholar]
  50. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792– 1797 [CrossRef] [PubMed]
    [Google Scholar]
  51. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44: D457– D462 [CrossRef] [PubMed]
    [Google Scholar]
  52. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428: 726– 731 [CrossRef] [PubMed]
    [Google Scholar]
  53. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403– 410 [CrossRef] [PubMed]
    [Google Scholar]
  54. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005; 21: 3674– 3676 [CrossRef] [PubMed]
    [Google Scholar]
  55. Moran NA, von Dohlen CD, Baumann P. Faster evolutionary rates in endosymbiotic bacteria than in cospeciating insect hosts. J Mol Evol 1995; 41: 727– 731 [CrossRef]
    [Google Scholar]
  56. Moran NA. Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 1996; 93: 2873– 2878 [CrossRef] [PubMed]
    [Google Scholar]
  57. Moran NA, Wernegreen JJ. Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 2000; 15: 321– 326 [CrossRef] [PubMed]
    [Google Scholar]
  58. Moran NA, Mccutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 2008; 42: 165– 190 [CrossRef] [PubMed]
    [Google Scholar]
  59. McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 2012; 10: 13– 26 [CrossRef]
    [Google Scholar]
  60. Tian H, Jing C. Genome sequence of the aerobic arsenate-reducing bacterium Pantoea sp. strain IMH. Genome Announc 2014; 2: e00267-14 [CrossRef] [PubMed]
    [Google Scholar]
  61. Liu B, Luo J, Li W, Long XF, Zhang YQ et al. Erwinia teleogrylli sp. nov., a bacterial isolate associated with a Chinese Cricket. PLoS One 2016; 11: e0146596 [CrossRef] [PubMed]
    [Google Scholar]
  62. Popp A, Cleenwerck I, Iversen C, de Vos P, Stephan R. Pantoea gaviniae sp. nov. and Pantoea calida sp. nov., isolated from infant formula and an infant formula production environment. Int J Syst Evol Microbiol 2010; 60: 2786– 2792 [CrossRef] [PubMed]
    [Google Scholar]
  63. Huelsenbeck JP. The robustness of two phylogenetic methods: four-taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining. Mol Biol Evol 1995; 12: 843– 849 [CrossRef] [PubMed]
    [Google Scholar]
  64. Bergsten J. A review of long-branch attraction. Cladistics 2005; 21: 163– 193 [CrossRef]
    [Google Scholar]
  65. Hillis DM. Molecular versus morphological approaches to systematics. Annu Rev Ecol Syst 1987; 18: 23– 42 [CrossRef]
    [Google Scholar]
  66. Fritz S, Cassir N, Noudel R, de La Rosa S, Roche PH et al. Postsurgical Pantoea calida meningitis: a case report. J Med Case Rep 2014; 8: 195 [CrossRef] [PubMed]
    [Google Scholar]
  67. Skrodenyte-Arbaciauskiene V, Sruoga A, Butkauskas D. Assessment of microbial diversity in the river trout Salmo trutta fario L. intestinal tract identified by partial 16S rRNA gene sequence analysis. Fisheries Science 2006; 72: 597– 602 [CrossRef]
    [Google Scholar]
  68. Cardoza YJ, Vasanthakumar A, Suazo A, Raffa KF. Survey and phylogenetic analysis of culturable microbes in the oral secretions of three bark beetle species. Entomol Exp Appl 2009; 131: 138– 147 [CrossRef]
    [Google Scholar]
  69. Wu Q, du J, Zhuang G, Jing C. Bacillus sp. SXB and Pantoea sp. IMH, aerobic As(V)-reducing bacteria isolated from arsenic-contaminated soil. J Appl Microbiol 2013; 114: 713– 721 [CrossRef] [PubMed]
    [Google Scholar]
  70. Brady CL, Venter SN, Cleenwerck I, Engelbeen K, Vancanneyt M et al. Pantoea vagans sp. nov., Pantoea eucalypti sp. nov., Pantoea deleyi sp. nov. and Pantoea anthophila sp. nov. Int J Syst Evol Microbiol 2009; 59: 2339– 2345 [CrossRef] [PubMed]
    [Google Scholar]
  71. Mergaert J, Verdonck L, Kersters K. Transfer of Erwinia ananas (synonym, Erwinia uredovora) and Erwinia stewartii to the genus Pantoea emend. as Pantoea ananas (Serrano 1928) comb. nov. and Pantoea stewartii (Smith 1898) comb. nov., respectively, and description of Pantoea stewartii subsp. indologenes subsp. nov. Int J Syst Bacteriol 1993; 43: 162– 173 [CrossRef]
    [Google Scholar]
  72. Rezzonico F, Smits THM, Born Y, Blom J, Frey JE et al. Erwinia gerundensissp. nov., a cosmopolitan epiphyte originally isolated from pome fruit trees. Int J Syst Evol Microbiol 2016; 66: 1583– 1592 [CrossRef] [PubMed]
    [Google Scholar]
  73. Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. MBio 2012; 3: e00252-12 [CrossRef] [PubMed]
    [Google Scholar]
  74. Callister SJ, McCue LA, Turse JE, Monroe ME, Auberry KJ et al. Comparative bacterial proteomics: analysis of the core genome concept. PLoS One 2008; 3: e1542 [CrossRef] [PubMed]
    [Google Scholar]
  75. den Bakker HC, Cummings CA, Ferreira V, Vatta P, Orsi RH et al. Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss. BMC Genomics 2010; 11: 688 [CrossRef] [PubMed]
    [Google Scholar]
  76. Smits TH, Guerrero-Prieto VM, Hernández-Escarcega G, Blom J, Goesmann A et al. Whole-genome sequencing of Erwinia amylovora strains from Mexico detects single nucleotide polymorphisms in rpsL conferring streptomycin resistance and in the avrRpt2 effector altering host interactions. Genome Announc 2014; 2: e01229 01213 [CrossRef] [PubMed]
    [Google Scholar]
  77. Kube M, Migdoll AM, Gehring I, Heitmann K, Mayer Y et al. Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genomics 2010; 11: 393 [CrossRef] [PubMed]
    [Google Scholar]
  78. Redzuan RA, Abu Bakar N, Rozano L, Badrun R, Mat Amin N et al. Draft genome sequence of Erwinia mallotivora BT-MARDI, causative agent of papaya dieback disease. Genome Announc 2014; 2: e00375-14 [CrossRef] [PubMed]
    [Google Scholar]
  79. Kube M, Migdoll AM, Müller I, Kuhl H, Beck A et al. The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia. Environ Microbiol 2008; 10: 2211– 2222 [CrossRef] [PubMed]
    [Google Scholar]
  80. Passos da Silva D, Devescovi G, Paszkiewicz K, Moretti C, Buonaurio R et al. Draft genome sequence of Erwinia toletana, a bacterium associated with olive knots caused by Pseudomonas savastanoi pv. savastanoi. Genome Announc 2013; 1: e00205-13 [CrossRef] [PubMed]
    [Google Scholar]
  81. Baltrus DA, Dougherty K, Arendt KR, Huntemann M, Clum A et al. Absence of genome reduction in diverse, facultative endohyphal bacteria. Microb Genom 2017; 3: [CrossRef] [PubMed]
    [Google Scholar]
  82. Lim JA, Lee DH, Kim BY, Heu S. Draft genome sequence of Pantoea agglomerans R190, a producer of antibiotics against phytopathogens and foodborne pathogens. J Biotechnol 2014; 188: 7– 8 [CrossRef] [PubMed]
    [Google Scholar]
  83. Shyntum DY, Venter SN, Moleleki LN, Toth I, Coutinho TA. Comparative genomics of type VI secretion systems in strains of Pantoea ananatis from different environments. BMC Genomics 2014; 15: 163 [CrossRef] [PubMed]
    [Google Scholar]
  84. Wan X, Hou S, Phan N, Malone Moss JS, Donachie SP et al. Draft genome sequence of Pantoea anthophila Strain 11-2 from hypersaline Lake Laysan, Hawaii. Genome Announc 2015; 3: e00321-15 [CrossRef] [PubMed]
    [Google Scholar]
  85. Stavrinides J, No A, Ochman H. A single genetic locus in the phytopathogen Pantoea stewartii enables gut colonization and pathogenicity in an insect host. Environ Microbiol 2010; 12: 147– 155 [CrossRef] [PubMed]
    [Google Scholar]
  86. Smits TH, Rezzonico F, Kamber T, Goesmann A, Ishimaru CA et al. Genome sequence of the biocontrol agent Pantoea vagans strain C9-1. J Bacteriol 2010; 192: 6486– 6487 [CrossRef] [PubMed]
    [Google Scholar]
  87. Suen G, Scott JJ, Aylward FO, Adams SM, Tringe SG et al. An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet 2010; 6: e1001129 [CrossRef] [PubMed]
    [Google Scholar]
  88. Hong KW, Gan HM, Low SM, Lee PK, Chong YM et al. Draft genome sequence of Pantoea sp. strain A4, a Rafflesia-associated bacterium that produces N-acylhomoserine lactones as quorum-sensing molecules. J Bacteriol 2012; 194: 6610 [CrossRef] [PubMed]
    [Google Scholar]
  89. Brown SD, Utturkar SM, Klingeman DM, Johnson CM, Martin SL et al. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides. J Bacteriol 2012; 194: 5991– 5993 [CrossRef] [PubMed]
    [Google Scholar]
  90. Ren Y, Ren Y, Zhou Z, Guo X, Li Y et al. Complete genome sequence of Enterobacter cloacae subsp. cloacae type strain ATCC 13047. J Bacteriol 2010; 192: 2463– 2464 [CrossRef] [PubMed]
    [Google Scholar]
  91. Masood N, Moore K, Farbos A, Hariri S, Paszkiewicz K et al. Draft genome sequences of three newly identified species in the genus Cronobacter, C. helveticus LMG23732T, C. pulveris LMG24059, and C. zurichensis LMG23730T. Genome Announc 2013; 1: e00783-13 [CrossRef] [PubMed]
    [Google Scholar]
  92. Daligault HE, Davenport KW, Minogue TD, Bishop-Lilly KA, Bruce DC et al. Draft genome assembly of Klebsiella pneumoniae type strain ATCC 13883. Genome Announc 2014; 2: e00939-14 [CrossRef] [PubMed]
    [Google Scholar]
  93. Daligault HE, Davenport KW, Minogue TD, Broomall SM, Bruce DC et al. Genome assembly of Serratia marcescens type strain ATCC 13880. Genome Announc 2014; 2: e00967-14 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002540
Loading
/content/journal/ijsem/10.1099/ijsem.0.002540
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error