1887

Abstract

A gram-stain-negative, aerobic, rod-shaped (1.3–1.9×0.3–0.5 µm) and non-motile marine bacterium, designated MEBiC09412, was isolated from seaweed collected at Yeonggwang County, South Korea. 16S rRNA gene sequence analysis demonstrated that strain MEBiC09412 shared high sequence similarity with NH83 (95.4 %). Growth was observed at 17–38 °C (optimum 30 °C), at pH 4.0–8.5 (optimum pH 7.0) and with 0.5–6.0 % (w/v; optimum 2.5 %) NaCl. The predominant cellular fatty acids were iso-C (27.4 %), iso-C G (9.6 %), anteiso-C (14.6 %), iso-C (6.2 %), iso-C 3OH (13.2 %) and summed feature 3 (comprising Cω6 and/or Cω7; 7.4 %). The DNA G+C content was determined to be 43.1 mol%, while the major respiratory quinone was menaquinone-6. Several phenotypic characteristics such as indole production, the oxidizing patterns of several carbohydrtaes (of glucose, fructose, sucrose, maltose, mannose etc.) and organic acids, and the enzyme activities of α-chymotrypsin and α-glucosidase differentiated strain MEBiC09412 from NH83. On the basis of this polyphasic taxonomic data, strain MEBiC09412 should be classified as a novel species of the genus with the suggested name sp. nov. The type strain is MEBiC09412 (=KCCM 43216=JCM 31588).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002539
2018-02-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/2/547.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002539&mimeType=html&fmt=ahah

References

  1. Garrity GM, Holt JG. The road map to the manual. In Boone DR, Castenholz RW, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 1 New York: Springer; 2001; pp.119–166[Crossref]
    [Google Scholar]
  2. Reichenbach H. The order Cytophagales. In Balows A, Tyüper HG, Dworkin M, Harder W, Shleifer KH et al. (editors) The Prokaryotes New York: Springer; 1992; pp.3631–3675[Crossref]
    [Google Scholar]
  3. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996;46:128–148 [CrossRef]
    [Google Scholar]
  4. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  5. Wu YH, Xamxidin M, Meng FX, Zhang XQ, Wang CS et al. Marinirhabdus gelatinilytica gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016;66:3095–3101 [CrossRef][PubMed]
    [Google Scholar]
  6. Muller EM, Leporacci NM, Macartney KJ, Shea AG, Crane RE et al. Low pH reduces the virulence of black band disease on Orbicella faveolata. PLoS One 2017;12:e0178869 [CrossRef][PubMed]
    [Google Scholar]
  7. Anantharaman K, Breier JA, Dick GJ. Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center. Isme J 2016;10:225–239 [CrossRef][PubMed]
    [Google Scholar]
  8. Mancuso FP, D'Hondt S, Willems A, Airoldi L, de Clerck O. Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Front Microbiol 2016;7:476 [CrossRef][PubMed]
    [Google Scholar]
  9. Nebot E, Casanueva JF, Solera R, Pendón C, Taracido LJ et al. Chapter 3 Marine biofouling in heat exchanger. In Chan J, Wong S. (editors) Biofouling: Types, Impact and Anti-fouling New York: Nova Science Publishers; 2010; pp.65–104
    [Google Scholar]
  10. Lee OO, Chung HC, Yang J, Wang Y, Dash S et al. Molecular techniques revealed highly diverse microbial communities in natural marine biofilms on polystyrene dishes for invertebrate larval settlement. Microb Ecol 2014;68:81–93 [CrossRef][PubMed]
    [Google Scholar]
  11. Kwon KK, Lee HS, Yang SH, Kim SJ. Kordiimonas gwangyangensis gen. nov., sp. nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage (Kordiimonadales ord. nov.) in the 'Alphaproteobacteria'. Int J Syst Evol Microbiol 2005;55:2033–2037 [CrossRef][PubMed]
    [Google Scholar]
  12. Yang SH, Kwon KK, Lee HS, Kim SJ. Shewanella spongiae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 2006;56:2879–2882 [CrossRef][PubMed]
    [Google Scholar]
  13. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  14. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980;8:87–91 [CrossRef]
    [Google Scholar]
  15. Zobell CE. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 1941;4:42–75
    [Google Scholar]
  16. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  17. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  18. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  19. Yang SH, Seo HS, Oh HM, Kim SJ, Lee JH et al. Brumimicrobium mesophilum sp. nov., isolated from a tidal flat sediment, and emended descriptions of the genus Brumimicrobium and Brumimicrobium glaciale. Int J Syst Evol Microbiol 2013;63:1105–1110 [CrossRef][PubMed]
    [Google Scholar]
  20. Consden R, Gordon AH. Effect of salt on partition chromatograms. Nature 1948;162:180–181 [CrossRef][PubMed]
    [Google Scholar]
  21. Dittmer JC, Lester RL. A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 1964;5:126–127[PubMed]
    [Google Scholar]
  22. Jacin H, Mishkin AR. Separation of carbohydrates on borate-impregnated silica gel g plates. J Chromatogr 1965;18:170–173 [CrossRef][PubMed]
    [Google Scholar]
  23. Collins MD. Isoprenoid quinone analysis in bacterial classification and identification. In Goodfellow M, Minikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–287
    [Google Scholar]
  24. Stackebrandt E, Liesack W. Nucleic acids and classification. In Goodfellow M, O’Donnell AG. (editors) Handbook of New Bacterial Systematics London: Academic Press; 1993; pp.158–160
    [Google Scholar]
  25. Giovannoni SJ. The polymerase chain reaction. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.177–203
    [Google Scholar]
  26. Lee J-W, Kwon KK, Azizi A, Oh H-M, Kim W et al. Microbial community structures of methane hydrate-bearing sediments in the Ulleung Basin, East Sea of Korea. Mar Pet Geol 2013;47:136–146 [CrossRef]
    [Google Scholar]
  27. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  31. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002539
Loading
/content/journal/ijsem/10.1099/ijsem.0.002539
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error