1887

Abstract

A strictly anaerobic bacterial strain (FH042) was isolated from a methanogenic reactor treating waste from cattle farms. Cells were stained Gram-positive, straight to gently curved rods with polar flagella. The strain was asaccharolytic. The strain fermented amino acids (-arginine, -lysine and -serine) as growth substrates and produced acetate and butyrate. The optimum temperature for growth was 30 °C and the optimum pH was 6.1–6.8. Oxidase, catalase and nitrate-reducing activities were negative. Hydrogen sulfide was produced. The genomic DNA G+C content of strain FH042 was 44.7±0.2 mol%. The major cellular fatty acids were Cω9 DMA, C/Cω9 (as summed feature), C DMA and C. The cell-wall peptidoglycan contained -diaminopimelic acid as a diagnostic amino acid. The most closely related described species on the basis of 16S rRNA gene sequences was in the family XIII in the order of the class with sequence similarity of 95.1 %. Based on the distinct differences in phylogenetic and phenotypic characteristics between strain FH042 and related species, gen. nov., sp. nov. is proposed to accommodate the strain. Type strain is FH042 (=JCM 31555=DSM 103574).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002534
2018-01-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/443.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002534&mimeType=html&fmt=ahah

References

  1. Buckel W. Anaerobic energy metabolism. In Lengeler JW, Drews G, Schlegel HG. (editors) Biology of the Prokaryotes Stuttgart: Blackwell Science; 1999; pp.278–326
    [Google Scholar]
  2. Ramsay IR, Pullammanappallil PC. Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 2001;12:247–257 [CrossRef][PubMed]
    [Google Scholar]
  3. Smith EA, Macfarlane GT. Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 1997;3:327–337 [CrossRef][PubMed]
    [Google Scholar]
  4. Díaz C, Baena S, Fardeau ML, Patel BK. Aminiphilus circumscriptus gen. nov., sp. nov., an anaerobic amino-acid-degrading bacterium from an upflow anaerobic sludge reactor. Int J Syst Evol Microbiol 2007;57:1914–1918 [CrossRef][PubMed]
    [Google Scholar]
  5. Ganesan A, Chaussonnerie S, Tarrade A, Dauga C, Bouchez T et al. Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum 'Synergistetes', isolated from an anaerobic sludge digester. Int J Syst Evol Microbiol 2008;58:2003–2012 [CrossRef][PubMed]
    [Google Scholar]
  6. Hamdi O, Ben Hania W, Postec A, Bouallagui H, Hamdi M et al. Aminobacterium thunnarium sp. nov., a mesophilic, amino acid-degrading bacterium isolated from an anaerobic sludge digester, pertaining to the phylum Synergistetes. Int J Syst Evol Microbiol 2015;65:609–614 [CrossRef][PubMed]
    [Google Scholar]
  7. Ueki A, Abe K, Suzuki D, Kaku N, Watanabe K et al. Anaerosphaera aminiphila gen. nov., sp. nov., a glutamate-degrading, Gram-positive anaerobic coccus isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 2009;59:3161–3167 [CrossRef][PubMed]
    [Google Scholar]
  8. Ueki A, Shibuya T, Kaku N, Ueki K. Aminocella lysinolytica gen. nov., sp. nov., a L-lysine-degrading, strictly anaerobic bacterium in the class Clostridia isolated from a methanogenic reactor of cattle farms. Arch Microbiol 2015;197:97–104 [CrossRef][PubMed]
    [Google Scholar]
  9. Ueki A, Goto K, Ohtaki Y, Kaku N, Ueki K. Description of Anaerotignum aminivorans gen. nov., sp. nov., a strictly anaerobic, amino-acid-decomposing bacterium isolated from a methanogenic reactor, and reclassification of Clostridium propionicum, Clostridium neopropionicum and Clostridium lactatifermentans as species of the genus Anaerotignum. Int J Syst Evol Microbiol 2017;67:4146–4153 [CrossRef][PubMed]
    [Google Scholar]
  10. Watanabe M, Kaku N, Ueki K, Ueki A. Falcatimonas natans gen. nov., sp. nov., a strictly anaerobic, amino-acid-decomposing bacterium isolated from a methanogenic reactor of cattle waste. Int J Syst Evol Microbiol 2016;66:4639–4644 [CrossRef][PubMed]
    [Google Scholar]
  11. Rainey FA, Hollen BJ, Small A. Genus I. Clostridium Prazmowski 1880, 23AL. In Vos PDe, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 NewYork: Springer; 2009; pp.736–864
    [Google Scholar]
  12. Holdeman LV, Cato EP, Moore WEC. Anaerobe Laboratory Manual, 4th ed. VA: Virginia Polytechnic Institute and State University; 1977
    [Google Scholar]
  13. Satoh A, Watanabe M, Ueki A, Ueki K. Physiological properties and phylogenetic affiliations of anaerobic bacteria isolated from roots of rice plants cultivated on a paddy field. Anaerobe 2002;8:233–246 [CrossRef]
    [Google Scholar]
  14. Blenden DC, Goldberg HS. Silver impregnation stain for leptospira and flagella. J Bacteriol 1965;89:899–900[PubMed]
    [Google Scholar]
  15. Akasaka H, Ueki A, Hanada S, Kamagata Y, Ueki K. Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. Int J Syst Evol Microbiol 2003;53:1991–1998 [CrossRef][PubMed]
    [Google Scholar]
  16. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  17. Moore LV, Bourne DM, Moore WE. Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram-negative bacilli. Int J Syst Bacteriol 1994;44:338–347 [CrossRef][PubMed]
    [Google Scholar]
  18. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[Crossref]
    [Google Scholar]
  19. Brosius J, Dull TJ, Sleeter DD, Noller HF. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 1981;148:107–127 [CrossRef][PubMed]
    [Google Scholar]
  20. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  22. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  23. Felsenstein JP. PHYLIP (Phylogeny Inference Package), Version 3.695 Department of Genome Sciences, University of Washington, Seattle, USA: 2013
    [Google Scholar]
  24. Matthies C, Mayer F, Schink B. Fermentative degradation of putrescine by new strictly anaerobic bacteria. Arch Microbiol 1989;151:498–505 [CrossRef]
    [Google Scholar]
  25. Matthies C, Evers S, Ludwig W, Schink B. Anaerovorax odorimutans gen. nov., sp. nov., a putrescine-fermenting, strictly anaerobic bacterium. Int J Syst Evol Microbiol 2000;50:1591–1594 [CrossRef][PubMed]
    [Google Scholar]
  26. Nakazawa F, Sato M, Poco SE, Hashimura T, Ikeda T et al. Description of Mogibacterium pumilum gen. nov., sp. nov. and Mogibacterium vescum gen. nov., sp. nov., and reclassification of Eubacterium timidum (Holdeman et al. 1980) as Mogibacterium timidum gen. nov., comb. nov. Int J Syst Evol Microbiol 2000;50:679–688 [CrossRef][PubMed]
    [Google Scholar]
  27. Wade WG. Genus I. Eubacterium Prévot, 1938, 294AL. In Vos PDe, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 NewYork: Springer; 2009; pp.865–891
    [Google Scholar]
  28. Hardman JK, Stadtman TC. Metabolism of ω-amino acids. I. Fermentation of γ-aminobutyric acid by Clostridium aminobutyricum n. sp. J Bacteriol 1960;79:544–548[PubMed]
    [Google Scholar]
  29. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994;44:812–826 [CrossRef][PubMed]
    [Google Scholar]
  30. Galperin MY, Brover V, Tolstoy I, Yutin N. Phylogenomic analysis of the family Peptostreptococcaceae (Clostridium cluster XI) and proposal for reclassification of Clostridium litorale (Fendrich et al. 1991) and Eubacterium acidaminophilum (Zindel et al. 1989) as Peptoclostridium litorale gen. nov. comb. nov. and Peptoclostridium acidaminophilum comb. nov. Int J Syst Evol Microbiol 2016;66:5506–5513 [CrossRef][PubMed]
    [Google Scholar]
  31. Lawson PA, Citron DM, Tyrrell KL, Finegold SM. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938. Anaerobe 2016;40:95–99 [CrossRef][PubMed]
    [Google Scholar]
  32. Lawson PA, Rainey FA. Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. Int J Syst Evol Microbiol 2016;66:1009–1016 [CrossRef][PubMed]
    [Google Scholar]
  33. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002534
Loading
/content/journal/ijsem/10.1099/ijsem.0.002534
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error